首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   75篇
  免费   1篇
  国内免费   12篇
  2020年   1篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2015年   1篇
  2014年   1篇
  2013年   3篇
  2011年   20篇
  2010年   3篇
  2009年   22篇
  2008年   8篇
  2007年   3篇
  2006年   3篇
  2005年   3篇
  2004年   2篇
  2003年   3篇
  2002年   5篇
  2001年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1994年   1篇
  1992年   1篇
  1990年   1篇
排序方式: 共有88条查询结果,搜索用时 15 毫秒
81.
To develop an active microbial activity quickly developing stabilizing thermophilic temperatures during the composting of wastewater sludge, the bulking agent (BA) plays a major role in establishing the recipe structure, exposed particle surface area and porosity. To optimize the biodegradation of a sludge compost recipe, the objective of this paper was to study the effect and interaction of initial moisture content (MC) and BA particle size distribution. Three 300 L insulated laboratory composters were used to treat two series of ten (10) recipes with different combinations of MC and BA particle size distribution. Using a to wastewater sludge to BA dry mass ratio of 1/6, the ten (10) recipes were repeated using two BA, residues recycled from a commercial sludge composting plant and crushed wood pallets. Each four week trial monitored O2 uptake, temperature, compost consolidation and airflow distribution. The Central Composite Factor Design method produced a model from the results estimating the impact of a wider range of MC and BA particles size distribution. The MC directly affected the total O2 uptake and therefore, organic matter biodegradation. The BA particle size distribution influenced compost consolidation with a MC crossed effect. Both BA particle size distribution and MC influenced compost airflow dispersion. Composting was optimized using the BA consisting of recycled green waste residues with particle size of 20–30 mm and a 55% MC. The predictive models suggested the need for further optimization of sludge and wood residue composting recipe.  相似文献   
82.
Poultry droppings, neem cake, castor cake, jatropha cake and grass clippings were used separately as organic nitrogen additives to decrease the high C:N ratio of wheat straw. Composting was carried out aerobically in presence of fungal consortium developed by including Aspergillus awamori, Aspergillus nidulans, Trichoderma viride and Phanerochaete chrysosporium. The degraded product was characterized to assess the technical viability of organic nitrogen supplements as well as fungal consortium in improving the quality of compost and hastening the process of decomposition of high lignocellulolytic waste. Evaluation of maturity showed that mixture of wheat straw, poultry dropping and jatropha cake had the lowest C:N ratio of 10:1, the highest humic acid fraction of 3.15%, the lowest dehydrogenase activity and a germination index exceeding 80% in 60 days of decomposition. Inoculated and grass clipping amended wheat straw–poultry dropping mixture resulted in compost with highest humus content of 11.8% and C:N ratio of 13.5, humic acid fraction of 2.84% and germination index of 59.66%. Fungal consortium was effective in improving the humus content of all the composted mixtures. In some treatments, germination index could not be correlated with C:N ratio. Non edible oil seed cake supplemented substrate mixtures did not respond to fungal inoculation as far as C:N ratio was concerned.  相似文献   
83.
铅胁迫对木榄幼苗抗氧化酶的影响   总被引:6,自引:0,他引:6  
用含不同浓度Pb(NO3)2(0~40 mmol·L-1)的Hoagland营养液处理沙培中的木榄(Bruguiera gymnorrhiza)幼苗,2个月后测定幼苗过氧化物酶(POD)、超氧化物歧化酶(SOD)和过氧化氢酶(CAT)活性并对其同工酶进行电泳分析。结果表明,1~10 mmol·L-1 Pb促进幼苗根和叶中抗氧化酶活性,但在20~40 mmol·L-1 Pb高浓度下,酶活性下降。电泳结果显示,Pb主要影响阴离子型POD同工酶活性。20~40 mmol·L-1Pb强烈抑制根中所有CAT同工酶的活性;30~40 mmol·L-1 Pb诱导出1条新的Cu/Zn-SOD同工酶LS-3和3条新的CAT同工酶RC-3、LC-2和LC-3。  相似文献   
84.
This study aimed to remove complex odorous gas produced from composting using a biotrickling filter and to observe the temporal and special distributions of bacteria, fungi, and actinomycetes. The removal efficiencies of the total volatile organic compounds (TVOC) were 26.1% and 81.5% before and after inoculation of volatile organic compounds (VOC)-degrading microbes, respectively. Especially trimethylamine was 100% degraded. In the first and second composting period, the odor reduction efficiencies showed average values of 86.2% and 94.5%, respectively. The total average of the bacteria in the biofilm was 2.06 × 109 CFU/g TS, which was 22.2% higher than that of the control (the culture of microbes prior to the inoculation of VOC-degrading microbes). The bacteria may have played a predominant role in odor removal. The total average of the fungi in the biofilm was 9.64 × 106 CFU/g TS, which was only 6.40% of the control. The total average of the actinomycetes in the biofilm was 5.10 × 105 CFU/g TS, which was 5.63 times higher than that of the control. Findings from this study showed that usage of a biotrickling filter is a promising process for the treatment of complex odorous gas.  相似文献   
85.
86.
Two bioremediation technologies were performed in order to explore a better treatment process for an oily sludge restoration in China during 2004. The bioremediation by augmentation of biopreparation was compared with a conventional composting. The oily sludge and oil-polluted soil were received from an oil production plant. The total hydrocarbon content (THC) varied from 327.7 to 371.2 g kg−1 of dry sludge and the THC in contaminated soil was 151.0 g kg−1. Before application of preparation, straw, sawdust, top sand and pure soil were added in different proportions to the sludge and soil and mixed thoroughly. Such sludge and soil composites were used for negative controls and for activation of indigenous oil degrading microorganisms with addition of fertilizer (positive controls). For composting, crude manure and straw were added to the oily sludge and the THC was 101.4 g kg−1. The biopreparation was applied every 2 weeks and experiment lasted 56 days under the ambient temperature. The sludge was mixed and watered every 3 days. After three times of biopreparation application, the THC decreased by 46–53% in the oily sludge and soil, while in the positive controls (activation of indigenous microorganisms) the THC decreased by 13–23%, and there was no oil degradation in negative controls After composting, the THC decreased by 31% in the oily sludge. The planting of Tall Fescue (Festuca arundinace) revealed a decrease of sludge toxicity after application of both bioremediation technologies and additionally decreased the THC by 5–7%.  相似文献   
87.
The impact of two-step inoculation of indigenous strains and their synergistic effect in the scaling-up of petroleum hydrocarbons biodegradation from a mineral-based medium (MBM) to a two-phase composting process were investigated. After isolating the strains KA3 and KA4 from heavy oily sludge (HOS), their emulsification index (E24), bacterial adhesion to hydrocarbon (BATH), and oil degradation efficiency were evaluated in the MBM. Then, they were inoculated twice into the composting bioreactors lasted for the primary 8 weeks as the first phase (FP) and subsequent 8 weeks as the second phase (SP). The results indicated that the consortium of the two strains degraded 16-61% of crude oil (1-5% concentration) in the MBM. In the composting reactors, removals of 20 g kg−1 initial concentration of total petroleum hydrocarbons (TPH) were found to be 63.95, 61.00, and 89.35% for the strains KA3, KA4, and their consortium, respectively. The computed biodegradation constants indicated the synergistic effect of the two strains and the effectiveness of the second-step inoculation. The study demonstrated the successful scaling-up of HOS biodegradation from MBM to the two-phase composting process through two-step inoculation of the isolated strains.  相似文献   
88.
Low ambient temperature presents a significant technical challenge for efficient operation of the composting facility located in cold region. In this study, mathematical model was used as a tool to develop the operational strategy to accomplish thermophilic composting of sewage sludge in the cold-climate environment. The correlations between composting temperature, water volatilization, heat loss rate, organics degradation and ambient temperature, feedstock temperature, sludge moisture and aeration rate were predicted and evaluated by using the numerical simulation method. The feasibility of optimizing air supply, adjusting feedstock moisture and elevating starting temperature in the low temperature surroundings was investigated. The results obtained from both mathematical modelling and pilot-scale composting experiments demonstrated that the combined strategies of the three approaches could preliminarily achieve material drying, pathogen inactivation and organics stabilization within 20 days at the ambient temperature as low as −24 °C. However, it seems difficult for anyone of these approaches to meet the requirement of thermophilic composting, independently.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号