首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   90篇
  免费   6篇
  国内免费   1篇
  2023年   1篇
  2020年   1篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   2篇
  2013年   5篇
  2012年   2篇
  2011年   5篇
  2010年   1篇
  2009年   4篇
  2008年   5篇
  2007年   4篇
  2006年   8篇
  2005年   3篇
  2004年   5篇
  2003年   6篇
  2002年   2篇
  2001年   5篇
  2000年   1篇
  1999年   2篇
  1998年   4篇
  1997年   1篇
  1996年   1篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1984年   1篇
  1982年   3篇
  1980年   1篇
  1979年   1篇
  1978年   3篇
  1976年   1篇
排序方式: 共有97条查询结果,搜索用时 15 毫秒
71.
By means of a λZAP II cDNA library constructed from seedlings of Beta vulgaris vulgaris and immunoscreening, a cDNA clone containing a partial sequence of a new ribosome-inactivating protein (RIP) was obtained. As confirmed by Western blot analysis, this clone produced a RIP upon induction with IPTG. We called it betavulgin (Bvg). The recombinant protein (re-Bvg) was somewhat smaller than plant-derived RIP (28 versus 30 and 32 kDa), but showed the specific N-glycosidase activity on tobacco ribosomes, confirming its RIP character. The cDNA was sequenced and the missing 5'-end was established by RACE using bvg-specific primers. The entire cDNA was 1080 nucleotides in length and encoded a protein of 272 amino acids with a sequence identity of 26–40% with other RIP.  相似文献   
72.
Summary The biological properties of an immunotoxin composed of an anti-CD6 monoclonal antibody conjugated to whole ricin, which had been modified so that the galactose-binding sites of the B chain were blocked (blocked ricin), were examined. Treatment of peripheral blood lymphocytes with anti-CD6-blocked ricin for a 24-h period prevented T cell proliferation induced by phytohemagglutinin in a dose-dependent manner with concentrations causing 50% inhibition (IC50) ranging from 5 pM to 30 pM. In contrast, treatment with either blocked ricin alone or with a control immunotoxin prepared with a B-cell-lineage-restricted monoclonal antibody gave IC50 values of approximately 2 nM. Although shortening the duration of the anti-CD6-blocked ricin treatment to as little as 3 h had little significant effect on the observed inhibition, T cell viability experiments demonstrated that the magnitude of immunotoxin-induced killing after a given time period is significantly higher when the target cells become activated. Thus, from the initial concentration of cells treated with anti-CD6-blocked ricin placed in culture, 40%–45% viable cells remained after 2 days yet only 3%–9% remained if phorbol ester and Ca2+ ionophore were added; activation of T cells after mock treatment using blocked ricin plus nonconjugated anti-CD6 demonstrated that this effect was not the result of activation alone. The toxicity of anti-CD6-blocked ricin was also measured by inhibition of PHA-induced clonogenic growth of normal T cells. Continuous treatment of the cells using anti-CD6-blocked ricin at 0.1 nM resulted in a surviving fraction of about 3.5 × 10–3; when immunotoxin treatment was for 24 h or less, the surviving fraction was only about 10–1. As an indication of the unique specificity of anti-CD6-blocked ricin, immunotoxin pretreatment of potential responder cells prevented the generation of allogeneic cytolytic T lymphocytes in mixed lymphocyte cultures yet had little effect on the generation of interleukin-2-induced lymphokine-activated killer cell activity. We conclude that anti-CD6-blocked ricin demonstrates a cellular specificity and potency that make it a highly promising anti-T cell reagent.  相似文献   
73.
The glycoproteins ricin and abrin intoxicate cells by inhibiting protein synthesis. Pretreatment of HeLa cells with cholera toxin partially protects them from ricin and abrin activity. The involvement in this phenomenon of the various effects of cholera toxin, namely, redistribution of membrane receptors elicited from protomer B and increasing cyclic AMP concentrations induced by protomer A, were studied. Substances able to enhance cyclic AMP concentrations do not affect ricin and abrin activity, while protomer B alone protects cells. In addition, the effects of several lectins on ricin or abrin toxicity were examined. Almost complete prevention of ricin or abrin activity was obtained using concanavalin A (Con A) and wheat germ agglutinin (WGA). Conversely, neither succinyl Con A nor Ulex europeus agglutinin (UEA) affected the cellular response. Both protomer B of cholera toxin and Con A did not alter the binding of ricin or abrin; they seem to protect cells by altering membrane structure.  相似文献   
74.
75.
Ribosome-inactivating proteins (RIPs) are N-glycosidases that depurinate a specific adenine residue in the conserved sarcin/ricin loop of ribosomal RNA. This modification renders the ribosome unable to bind the elongation factors, thereby inhibiting the protein synthesis. Maize RIP, a type III RIP, is unique compared to the other type I and type II RIPs because it is synthesized as a precursor with a 25-residue internal inactivation region, which is removed in order to activate the protein. In this study, we describe the first solution structure of this type of RIP, a  28-kDa active mutant of maize RIP (MOD). The overall protein structure of MOD is comparable to those of the other type I RIPs and the A-chain of type II RIPs but shows significant differences in specific regions, including (1) shorter β6 and αB segments, probably for accommodating easier substrate binding, and (2) an α-helix instead of an antiparallel β-sheet in the C-terminal domain, which has been reported to be involved in binding ribosomal protein P2 in some RIPs. Furthermore, NMR chemical shift perturbation experiments revealed that the P2 binding site on MOD is located at the N-terminal domain near the internal inactivation region. This relocation of the P2 binding site can be rationalized by concerted changes in the electrostatic surface potential and 3D structures on the MOD protein and provides vital clues about the underlying molecular mechanism of this unique type of RIP.  相似文献   
76.
Extended binding site of ricin B lectin for oligosaccharide recognition   总被引:1,自引:0,他引:1  
The plant lectin ricin B chain binds oligosaccharide with more affinity than the mono- or disaccharide ligands. The experiments indicated that a biantennary oligosaccharide could bind itself to any of the crystallographically established 1st or 2nd binding sites. After manual docking of either terminal galactose residues of the oligosaccharide in the 1st and 2nd binding sites of Ricin B and simulating the systems over nanosecond trajectories in implicit solvent, it was observed that the protein bound the oligosaccharide strongly through both its 1st and 2nd binding sites. Not only were the terminal galactose residues, several other residues of the oligosaccharide were involved in the binding scheme. Average gas phase energies were calculated molecular mechanically, solvation energies were calculated by Generalized Born model and the normal mode analysis was used to calculate the entropic contribution of binding. The entropy/enthalpy compensation has been observed for the protein-oligosaccharide interactions. The binding was found to be enthalpically favorable and compensating for the unfavorable entropic contribution. Comparison of the calculated free energy with the experimental data clearly suggests that binding is mono-dentate rather than bi-dentate through a single Gal-containing antenna.  相似文献   
77.
The sarcin–ricin loop (SRL) of 23S rRNA in the large ribosomal subunit is a factor-binding site that is essential for GTP-catalyzed steps in translation, but its precise functional role is thus far unknown. Here, we replaced the 15-nucleotide SRL with a GAAA tetraloop and affinity purified the mutant 50S subunits for functional and structural analysis in vitro. The SRL deletion caused defects in elongation-factor-dependent steps of translation and, unexpectedly, loss of EF-Tu-independent A-site tRNA binding. Detailed chemical probing analysis showed disruption of a network of rRNA tertiary interactions that hold together the 23S rRNA elements of the functional core of the 50S subunit, accompanied by loss of ribosomal protein L16. Our results reveal an influence of the SRL on the higher-order structure of the 50S subunit, with implications for its role in translation.  相似文献   
78.
Li M  Huang Y  Xiao Y 《Proteins》2008,72(4):1161-1170
Proteins with symmetric structures are ideal models to investigate the sequence-structure relations. We investigate proteins with beta-trefoil fold and find they have different degrees of sequence symmetries although they show similar symmetric structures. To understand this, we calculate the strength of interactions of the beta-trefoil folds with surrounding environments and find the low degrees of sequence symmetries are often correlated with large external interactions. Our results give an additional confirmation of Anfinsen's thermodynamic hypothesis that protein structures are not only determined by their sequences but also by their surrounding environments. We suggest the external interactions should be considered additionally in protein structure prediction through ab initio folding.  相似文献   
79.
80.
Ricin is transported from early endosomes and/or the recycling compartment to the trans-Golgi network (TGN) and subsequently to the endoplasmic recticulum (ER) before it enters the cytosol and intoxicates cells. We have investigated the role of the Rab6 isoforms in retrograde transport of ricin using both oligo- and vector-based RNAi assays. Ricin transport to the TGN was inhibited by the depletion of Rab6A when the Rab6A messenger RNA (mRNA) levels were reduced by more than 40% and less than 75%. However, when Rab6A mRNA was reduced by more than 75% and Rab6A' mRNA was simultaneously up-regulated, the inhibition of ricin sulfation was abolished, indicating that the up-regulation of Rab6A' may compensate for the loss of Rab6A function. In addition, we found that a near complete depletion of Rab6A' gave approximately 40% reduction in ricin sulfation. The up-regulation of Rab6A mRNA levels did not seem to compensate for the loss of Rab6A' function. The depletion of both Rab6A and Rab6A' gave a stronger inhibition of ricin sulfation than what was observed knocking down the two isoforms separately. In conclusion, both Rab6A and Rab6A' seem to be involved in the transport of ricin from endosomes to the Golgi apparatus.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号