首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5978篇
  免费   331篇
  国内免费   319篇
  2023年   41篇
  2022年   26篇
  2021年   70篇
  2020年   75篇
  2019年   121篇
  2018年   86篇
  2017年   116篇
  2016年   118篇
  2015年   127篇
  2014年   249篇
  2013年   326篇
  2012年   249篇
  2011年   203篇
  2010年   204篇
  2009年   231篇
  2008年   291篇
  2007年   302篇
  2006年   312篇
  2005年   316篇
  2004年   277篇
  2003年   256篇
  2002年   217篇
  2001年   224篇
  2000年   229篇
  1999年   205篇
  1998年   181篇
  1997年   167篇
  1996年   164篇
  1995年   183篇
  1994年   173篇
  1993年   114篇
  1992年   113篇
  1991年   99篇
  1990年   99篇
  1989年   81篇
  1988年   64篇
  1987年   59篇
  1986年   29篇
  1985年   49篇
  1984年   41篇
  1983年   25篇
  1982年   24篇
  1981年   14篇
  1980年   17篇
  1979年   24篇
  1978年   13篇
  1977年   7篇
  1976年   5篇
  1975年   4篇
  1974年   4篇
排序方式: 共有6628条查询结果,搜索用时 125 毫秒
71.
Understanding the mechanisms that enforce, maintain or reverse the process of speciation is an important challenge in evolutionary biology. This study investigates the patterns of divergence and discusses the processes that form and maintain divergent lineages of the tsetse fly Glossina fuscipes fuscipes in Uganda. We sampled 251 flies from 18 sites spanning known genetic lineages and the four admixture zones between them. We apply population genomics, hybrid zone and approximate Bayesian computation to the analysis of three types of genetic markers: 55,267 double‐digest restriction site‐associated DNA (ddRAD) SNPs to assess genome‐wide admixture, 16 microsatellites to provide continuity with published data and accurate biogeographic modelling, and a 491‐bp fragment of mitochondrial cytochrome oxidase I and II to infer maternal inheritance patterns. Admixture zones correspond with regions impacted by the reorganization of Uganda's river networks that occurred during the formation of the West African Rift system over the last several hundred thousand years. Because tsetse fly population distributions are defined by rivers, admixture zones likely represent both old and new regions of secondary contact. Our results indicate that older hybrid zones contain mostly parental types, while younger zones contain variable hybrid types resulting from multiple generations of interbreeding. These findings suggest that reproductive barriers are nearly complete in the older admixture zones, while nearly absent in the younger admixture zones. Findings are consistent with predictions of hybrid zone theory: Populations in zones of secondary contact transition rapidly from early to late stages of speciation or collapse all together.  相似文献   
72.
73.
Chromosome number variations play an important role in the genus Medicago. In addition to polyploidy there are cases of dysploidy as evidenced by two basic numbers, x = 8 and x = 7, the latter limited to five annual species having 2n = 14. Annuals are diploid with the exception of Medicago scutellata and Medicago rugosa which have 2n = 30 and are considered the result of crosses between the 2n = 16 and 2n = 14 species. However, this hypothesis has never been tested. This study was carried out to investigate the 2n = 14 and 2n = 30 karyotypes and verify the allopolyploid origin of M. scutellata and M. rugosa. Fluorescence in situ hybridization (FISH) of rDNA probes and genomic in situ hybridization (GISH) were performed. FISH showed that all five diploids with 2n = 14 have one pair of 45S and one pair of 5S rDNA sites. M. scutellata displayed four sites of 45S and four sites of 5S rDNA, while in M. rugosa only one pair of each of these sites was found. GISH did not produce signals useful to identify the presumed progenitors with 14 chromosomes. This result suggests alternative evolutionary pathways, such as the formation of tetraploids (2n = 32) and subsequent dysploidy events leading to the chromosome number reduction.  相似文献   
74.
Gene flow between populations can allow the spread of beneficial alleles and genetic diversity between populations, with importance to conservation, invasion biology, and agriculture. Levels of gene flow between populations vary not only with distance, but also with divergence in reproductive phenology. Since phenology is often locally adapted, arriving migrants may be reproductively out of synch with residents, which can depress realized gene flow. In flowering plants, the potential impact of phenological divergence on hybridization between populations can be predicted from overlap in flowering schedules—the daily count of flowers capable of pollen exchange—between a resident and migrant population. The accuracy of this prospective hybridization estimate, based on parental phenotypes, rests upon the assumptions of unbiased pollen transfer between resident and migrant active flowers. We tested the impact of phenological divergence on resident–migrant mating frequencies in experiments that mimicked a single large gene flow event. We first prospectively estimated mating frequencies two lines of Brassica rapaselected or early and late flowering. We then estimated realized mating frequencies retrospectively through progeny testing. The two estimates strongly agreed in a greenhouse experiment, where procedures ensured saturating, unbiased pollination. Under natural pollination in the field, the rate of resident–migrant mating, was lower than estimated by phenological divergence alone, although prospective and retrospective estimates were correlated. In both experiments, differences between residents and migrants in flowering schedule shape led to asymmetric hybridization. Results suggest that a prospective estimate of hybridization based on mating schedules can be a useful, although imperfect, tool for evaluating potential gene flow. They also illustrate the impact of mating phenology on the magnitude and symmetry of reproductive isolation.  相似文献   
75.
The fish genus Poeciliopsis constitutes a valuable research system for evolutionary ecology, whose phylogenetic relationships have not been fully elucidated. We conducted a multilocus phylogenetic study of the genus based on seven nuclear and two mitochondrial loci with a thorough set of analytical approaches, that is, concatenated (also known as super‐matrix), species trees, and phylogenetic networks. Although several relationships remain unresolved, the overall results uncovered phylogenetic affinities among several members of this genus. A population previously considered of undetermined taxonomic status could be unequivocally assigned to P. scarlli; revealing a relatively recent dispersal event across the Trans‐Mexican Volcanic Belt (TMVB) or Pacific Ocean, which constitute a strong barrier to north–south dispersal of many terrestrial and freshwater taxa. The closest relatives of P. balsas, a species distributed south of the TMVB, are distributed in the north; representing an additional north–south split in the genus. An undescribed species of Poeciliopsis, with a highly restricted distribution (i.e., a short stretch of the Rio Concepcion; just south of the US‐Mexico border), falls within the Leptorhaphis species complex. Our results are inconsistent with the hypothesis that this species originated by “breakdown” of an asexual hybrid lineage. On the other hand, network analyses suggest one or more possible cases of reticulation within the genus that require further evaluation with genome‐wide marker representation and additional analytical tools. The most strongly supported case of reticulation occurred within the subgenus Aulophallus (restricted to Central America), and implies a hybrid origin for P. retropinna (i.e., between P. paucimaculata and P. elongata). We consider that P. balsas and P. new species are of conservation concern.  相似文献   
76.
Behavioral barriers to gene flow often evolve faster than intrinsic incompatibilities and can eliminate the opportunity for hybridization between interfertile species. While acoustic signal divergence is a common driver of premating isolation in birds and insects, its contribution to speciation in mammals is less studied. Here we characterize the incidence of, and potential barriers to, hybridization among three closely related species of grasshopper mice (genus Onychomys). All three species use long‐distance acoustic signals to attract and localize mates; Onychomys arenicola and Onychomys torridus are acoustically similar and morphologically cryptic whereas Onychomys leucogaster is larger and acoustically distinct. We used genotyping‐by‐sequencing (GBS) to test for evidence of introgression in 227 mice from allopatric and sympatric localities in the western United States and northern Mexico. We conducted laboratory mating trials for all species pairs to assess reproductive compatibility, and recorded vocalizations from O. arenicola and O. torridus in sympatry and allopatry to test for evidence of acoustic character displacement. Hybridization was rare in nature and, contrary to prior evidence for O. torridus/O. arenicola hybrids, only involved O. leucogaster and O. arenicola. In contrast, laboratory crosses between O. torridus and O. arenicola produced litters whereas O. leucogaster and O. arenicola crosses did not. Call fundamental frequency in O. torridus and O. arenicola was indistinguishable in allopatry but significantly differentiated in sympatry, a pattern consistent with reproductive character displacement. These results suggest that assortative mating based on a long‐distance signal is an important isolating mechanism between O. torridus and O. arenicola and highlight the importance of behavioral barriers in determining the permeability of species boundaries.  相似文献   
77.
Invasive bighead (Hypophthalmichthys nobilis) and silver carp (H. molitrix) are reproductively isolated in their native range, but form a bimodal, multigenerational hybrid swarm within the Mississippi River Basin (MRB). Despite observed F1 hybrid superiority in experimental settings, effects of postzygotic selection on bighead and silver carp hybrids have not been tested in a natural system. Individual parent and hybrid genotypes were resolved at 57 species‐specific loci and used to evaluate postzygotic selection for body condition (Wr) and female reproductive potential (presence of spawning stage gonads and gonadosomatic index [GSI]) in the MRB during 2009–2011. Body condition in the Marseilles Reach, Illinois River declined with a decrease in species‐specific allele frequency from 1.0 to 0.4 for each species and early generation hybrids (F1, F2, and first‐generation backcross) had lower mean Wr than late generation hybrids (2nd+ generation backcrosses) and parentals. Proportions of stage IV and stage V (spawning stage) female gonads differed between bighead and silver carp, but not among parentals and their early and late generation hybrids within the MRB. Mean GSI values did not differ between parentals and hybrids. Because reproductive potential did not differ between hybrids and parentals, our results suggest that early generation hybrids occur in low frequency either as a factor of poor condition (Wr) and postreproductive survival, infrequent reproductive encounters by parental bighead and silver carp, or selection pressures acting on juvenile or immature life stages. Our results suggest that a combination of genetic and environmental factors may contribute to the postzygotic success of bighead and silver carp hybrids in the Mississippi River Basin.  相似文献   
78.
When ecologically divergent taxa encounter one another, hybrid zones can form when reproductive isolation is incomplete. The location of such hybrid zones can be influenced by environmental variables, and an ecological context can provide unique insights into the mechanisms by which species diverge and are maintained. Two ecologically differentiated species of small benthic fishes, the endemic and imperiled prairie chub, Macrhybopsis australis, and the shoal chub, Macrhybopsis hyostoma, are locally sympatric within the upper Red River Basin of Texas. We integrated population genomic data and environmental data to investigate species divergence and the maintenance of species boundaries in these two species. We found evidence of advanced‐generation asymmetric hybridization and introgression, with shoal chub alleles introgressing more frequently into prairie chubs than the reciprocal. Using a Bayesian Genomic Cline framework, patterns of genomic introgression were revealed to be quite heterogeneous, yet shoal chub alleles were found to have likely selectively introgressed across species boundaries significantly more often than prairie chub alleles, potentially explaining some of the observed asymmetry in hybridization. These patterns were remarkably consistent across two sampled geographic regions of hybridization. Several environmental variables were found to significantly predict individual admixture, suggesting ecological isolation might maintain species boundaries.  相似文献   
79.
80.
Magnoliaceae, an assemblage of early diverged angiosperms, comprises two subfamilies, speciose Magnolioideae with approximately 300 species in varying numbers of genera and monogeneric Liriodendroideae with two species in Liriodendron L. This family occupies a pivotal phylogenetic position with important insights into the diversification of early angiosperms, and shows intercontinentally disjunct distribution patterns between eastern Asia and the Americas. Widespread morphological homogeneity and slow substitution rates in Magnolia L. s.l. resulted in poorly supported phylogenetic relationships based on morphology or molecular evidence, which hampers our understanding of the genus’ temporal and spacial evolution. Here, based on the newly generated genome skimming data for 48 Magnolia s.l. species, we produced robust Magnolia phylogenies using genome-wide markers from both plastid genomes and single nucleotide polymorphism data. Contrasting the plastid and nuclear phylogenies revealed extensive cytonuclear conflicts in both shallow and deep relationships. ABBA-BABA and PhyloNet analyses suggested hybridization occurred within sect. Yulania, and sect. Magnolia, which is in concordance with the ploidy level of the species in these two sections. Divergence time estimates and biogeographic reconstruction indicated that the timing of the three tropical Magnolia disjunctions coincided with the mid-Eocene cooling climate and/or late Eocene climate deterioration, and two temperate disjunctions occurred much later, possibly during the warm periods of the Miocene, hence supporting the boreotropical flora concept of Magnolia s.l.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号