首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   123篇
  免费   16篇
  国内免费   9篇
  2023年   1篇
  2021年   6篇
  2020年   4篇
  2019年   5篇
  2018年   4篇
  2017年   5篇
  2016年   10篇
  2015年   6篇
  2014年   8篇
  2013年   7篇
  2012年   9篇
  2011年   4篇
  2010年   6篇
  2009年   4篇
  2008年   8篇
  2007年   11篇
  2006年   6篇
  2005年   4篇
  2004年   6篇
  2003年   6篇
  2002年   3篇
  2001年   3篇
  1999年   3篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1994年   1篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   1篇
  1987年   1篇
  1985年   1篇
  1982年   1篇
  1979年   1篇
  1977年   1篇
  1976年   2篇
排序方式: 共有148条查询结果,搜索用时 15 毫秒
71.
Animals often engage in mutualistic associations with microorganisms that protect them from predation, parasitism or pathogen infection. Studies of these interactions in insects have mostly focussed on the direct effects of symbiont infection on natural enemies without studying community‐wide effects. Here, we explore the effect of a defensive symbiont on population dynamics and species extinctions in an experimental community composed of three aphid species and their associated specialist parasitoids. We found that introducing a bacterial symbiont with a protective (but not a non‐protective) phenotype into one aphid species led to it being able to escape from its natural enemy and increase in density. This changed the relative density of the three aphid species which resulted in the extinction of the two other parasitoid species. Our results show that defensive symbionts can cause extinction cascades in experimental communities and so may play a significant role in the stability of consumer‐herbivore communities in the field.  相似文献   
72.
Information is presented concerning the overall arrangement of plastid DNA (ptDNA) in plastids of approximately 100 spp. of eukaryote algae, representing all classes. The three-dimensional arrangement of the ptDNA was assessed by study of both living and fixed material, stained with the DNA fluorochrome 4′,6-diamidino-2-phenylindole (DAPI), using both phase and fluorescence microscopy. The widespread occurrence of two major types of ptDNA configuration known from prior electron microscopy studies was confirmed. These are (1) DNA densities (nucleoids) of variable size and morphology, scattered throughout the plastid, and (2) a ring nucleoid, beaded or unbeaded, lying just within the girdle lamella. Type 1 is characteristic of Rhodophyta, Dinophyta, Chlorophyta, Cryptophyta, Prymnesiophyceae and Eustigmatophyceae (with one exception). Type 2 is characteristic of Phaeophyceae, Bacillariophyceae, Raphidophyceae, Chrysophyceae (except silicoflagellates and organisms such as Synura and Dinobryon), and Xanthophyceae (with the exception of Vaucheria and three genera known to lack girdle lamellae, Bumilleria, Bumilleriopsis, and Pseudobumilleriopsis). Some of these exceptional forms, as well as Euglenophyta, have configurations of ptDNA not previously recognized. In all the configurations observed, the DNA of a single plastid could be interpreted as being in continuity. This character of plastids appears to be stable under varied conditions of growth and at differing stages of the life cycle, where examined, and has confirmed the reclassification made on other grounds of several taxonomic entities. It has also revealed new questionable classifications. Since DAPI staining is far simpler than serial sectioning for electron microscopy in revealing ptDNA architecture, use of the technique may be valuable for future studies of numerous organisms, both to help in their identification and as an aid to unravelling major taxonomic affinities. In light of the endosymbiont hypothesis, plastid characters may require as great attention as those of the remainder of the cell.  相似文献   
73.
The pandemic distribution of Wolbachia (alpha-proteobacteria) across arthropods is largely due to the ability of these maternally inherited endosymbionts to successfully shift hosts across species boundaries. Yet it remains unclear whether Wolbachia has preferential routes of transfer among species. Here, we examined populations of eight species of the North American funnel-web spider genus Agelenopsis to evaluate whether Wolbachia show evidence for host specificity and the relative contribution of horizontal vs. vertical transmission of strains within and among related host species. Wolbachia strains were characterized by multilocus sequence typing (MLST) and Wolbachia surface protein (WSP) sequences, and analysed in relation to host phylogeny, mitochondrial diversity and geographical range. Results indicate that at least three sets of divergent Wolbachia strains invaded the genus Agelenopsis. After each invasion, the Wolbachia strains preferentially shuffled across species of this host genus by horizontal transfer rather than cospeciation. Decoupling of Wolbachia and host mitochondrial haplotype (mitotypes) evolutionary histories within single species reveals an extensive contribution of horizontal transfer also in the rapid dispersal of Wolbachia among conspecific host populations. These findings provide some of the strongest evidence to support the association of related Wolbachia strains with related hosts by means of both vertical and horizontal strain transmission. Similar analyses across a broader range of invertebrate taxa are needed, using sensitive methods for strain typing such as MLST, to determine if this pattern of Wolbachia dispersal is peculiar to Agelenopsis (or spiders), or is in fact a general pattern in arthropods.  相似文献   
74.
The facultative endosymbiont of aphids, Hamiltonella defensa , kills parasitoid wasp larvae, allowing aphid hosts to survive and reproduce. This protection may depend on toxins that are encoded by the genomes of H. defensa and of its bacteriophage (APSE). Strains of H. defensa vary in degree of protection conferred upon Acyrthosiphon pisum (pea aphid). Although H. defensa is known to undergo some horizontal transmission among aphid maternal lineages, divergence, recombination, and population structure in H. defensa and APSE have not been characterized. We performed a multilocus sequence analysis of 10 bacterial and five phage loci for strains isolated from A. pisum and other aphid species. The H. defensa chromosome was found to be largely clonal, allowing us to generate a well-resolved H. defensa strain phylogeny. In contrast, APSE chromosomes undergo recombination and numerous H. defensa strains have probably lost the phage. Within a set of H. defensa strains that are indistinguishable on the basis of chromosomal genes or restriction digests of chromosomal fragments, loss of APSE is associated with decreased protection, strongly suggesting that APSE-encoded genes contribute to the defensive phenotype. Thus, homologous recombination of APSE genes and sexual transmission of symbionts and phage are likely factors influencing the exchange of ecologically important genes among symbionts. Although H. defensa has been lost, transferred and gained within A. pisum , one subclade of H. defensa appears to be universal within a subclade of the aphid genus Uroleucon , suggesting a transition from facultative, horizontal transmission to strictly vertical inheritance.  相似文献   
75.
Wolbachia are very common, maternally transmitted endosymbionts of insects. They often spread by a mechanism termed cytoplasmic incompatibility (CI) that involves reduced egg hatch when Wolbachia-free ova are fertilized by sperm from Wolbachia-infected males. Because the progeny of Wolbachia-infected females generally do not suffer CI-induced mortality, infected females are often at a reproductive advantage in polymorphic populations. Deterministic models show that Wolbachia that impose no costs on their hosts and have perfect maternal transmission will spread from arbitrarily low frequencies (though initially very slowly); otherwise, there will be a threshold frequency below which Wolbachia frequencies decline to extinction and above which they increase to fixation or a high stable equilibrium. Stochastic theory was used to calculate the probability of fixation in populations of different size for arbitrary current frequencies of Wolbachia, with special attention paid to the case of spread after the arrival of a single infected female. Exact results are given based on a Moran process that assumes a specific demographic model, and approximate results are obtained using the more general Wright-Fisher theory. A new analytical approximation for the probability of fixation is derived, which performs well for small population sizes. The significance of stochastic effects in the natural spread of Wolbachia and their relevance to the use of Wolbachia as a drive mechanism in vector and pest management are discussed.  相似文献   
76.
Wolbachia harbored by most filarial parasites, is critical to both embryogenesis and microfilarial development, and may lead to inflammation and pathogenesis in infected hosts. Based on alignment of the sequences from the wsp, ftsZ, and 16S rRNA genes, Wolbachia was demonstrated to exist in Angiostrongylus cantonensis, a non-filaroid nematode. Although the wsp gene may not be the best candidate for evolutionary analysis of Wolbachia, this gene has been sequenced from a broader coverage of the host species, making it feasible to be used for phylogenetic analysis in this study. The results from both Neighbor-joining and Maximum parsimony methods showed that this novel Wolbachia does not belong to any of the known groups (C or D) of nematode-derived Wolbachia. In addition, the wsp gene sequence of this newly identified endosymbiont revealed a high degree of identity (98%) with that from Diaea circumlita c2, tentatively classified into the putative group G. This suggests that Wolbachia from A. cantonensis could represent a deeply branched lineage in Wolbachia evolution or the occurrence of horizontal transfer between infected hosts. In conclusion, the findings provide some insights into our understanding of the evolution of Wolbachia, particularly the isolate from A. cantonensis.  相似文献   
77.
To correlate a prokaryotic endosymbiont in the pea aphid, Acyrthosiphonkondoi, with the endosymbionts in related aphid species as wellas with free-living bacteria and subcellular organelles, andto study the mode of its gene expression within aphid cells,we have cloned and characterized the genes encoding ribosomalproteins S3, L16, L29, S17, L14, L24, L5, S14, S8, L6, L18,S5, L30, L15 and secretion protein Y (Sec Y) from the S10 andspc ribosomal protein gene operons of this endosymbiont. Theorganization of these genes is identical to that in Escherichiacoli, and their nucleotide sequences are highly similar (87%identity) to the corresponding E. coli genes. They are muchless similar to the corresponding chloroplast and mitochondrialgenes. The guanine plus cytosine G+C content of the genes ofthe A. kondoi endosymbiont is much higher than those of theendosymbionts in related aphid species reported so far. It appearseither that the A. kondoi endosymbiont is derived from an ancestralbacterium different from those in other aphids or that its G+Ccontent increased in a relatively short time after the evolutionarydivergence of its host.  相似文献   
78.
肉足鞭毛类原生动物中宿主—共生体系统的研究   总被引:2,自引:0,他引:2  
目前已在20多种变形虫和70多种鞭毛虫中发现细菌内共生体。大部分细菌内共生体位于宿主细胞质共生泡中,仅少数鞭毛虫的内共生体位于核质中。变形虫-细菌共生系统形成后,共生体影响宿主细胞基因,对其基因缺陷产生互补作用。灰胞藻类鞭毛虫-蓝绿藻共生体系统的研究表明,叶绿体起源于一种原始的共生蓝细菌。锥体亚目鞭毛虫细胞质内普遍含有双心体,该共生体可能是由来自波豆亚目的锥体类鞭毛虫遗传的。作者推测,继续研究鞭毛虫和原校生物共生关系起源的基本阶段,可阐明原生动物的共生系统起源的基本原则,并为真核细胞起源的理论提供进一步的证据;深入研究变形虫-细菌共生系统,可在遗传精细结构和代谢调节的进化方面为真核细胞内共生起源的理论提供分子水平上的证据。  相似文献   
79.
An examination of the pigments of the binucleate dinoflagellate Peridinium balticum (Levander) Lemmerman revealed the presence of chlorophylls a, c1 and c2 and the carotenoids: fucoxanthin (most abundant), diadinoxanthin, diatoxanthin, an unidentified fucoxanthin-like xanthophyll, β-carotene, γ-carotene and astaxanthin. A comparison of the pigments of P. balticum and P. foliaceum (Stein) Biecheler, also a binucleate dinoflagellate, demonstrated similar compositions. However P. balticum lacked the β-carotene precursors (e.g. phytoene) which accumulated outside the chloroplast in P. foliaceum. This study indicates that P. balticum and P. foliaceum are closely related; each species is a heterotrophic dinoflagellate with a photosynthetic endosymbiont taxonomically affiliated with the Chrysophyta (Chrysophyceae or Bacillariophyceae).  相似文献   
80.
The fine structure of the binucleate, fucoxanthin-containing dinoflagellate Peridinium foliaceum (Stein) Biechler was re-examined for evidence of an endosymbiout. The eucaryotic nucleus, chloroplasts and associated ribosome-dense cytoplasm were separated by a single invaginating membrane from the rest of the dinoflagellate cell. The triple membrane-enclosed eyespot, mesocaryotic nucleus, trichocysts and accumulation bodies resided in the dinoflagellate cytoplasm. These observations suggest that P. foliaceum contains a membrane-bound endosymbiont, similar to that already described for the closely related species. P. balticum (Levander) Lemmermann.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号