首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   63篇
  免费   5篇
  国内免费   6篇
  2023年   1篇
  2022年   1篇
  2020年   2篇
  2018年   2篇
  2017年   2篇
  2016年   2篇
  2015年   2篇
  2013年   4篇
  2011年   2篇
  2010年   1篇
  2009年   3篇
  2007年   2篇
  2006年   3篇
  2005年   6篇
  2004年   1篇
  2003年   4篇
  2001年   5篇
  2000年   2篇
  1999年   8篇
  1998年   1篇
  1997年   4篇
  1996年   2篇
  1995年   1篇
  1994年   1篇
  1993年   2篇
  1992年   2篇
  1991年   1篇
  1990年   2篇
  1989年   1篇
  1988年   3篇
  1984年   1篇
排序方式: 共有74条查询结果,搜索用时 15 毫秒
71.
Evolution of high-productivity angiosperms has been regarded as a driver of Mesozoic ecosystem restructuring. However, terrestrial productivity is limited by availability of rock-derived nutrients such as phosphorus for which permanent increases in weathering would violate mass balance requirements of the long-term carbon cycle. The potential reality of productivity increases sustained since the Mesozoic is supported here with documentation of a dramatic increase in the evolution of nitrogen-fixing or nitrogen-scavenging symbioses, including more than 100 lineages of ectomycorrhizal and lichen-forming fungi and plants with specialized microbial associations. Given this evidence of broadly increased nitrogen availability, we explore via carbon cycle modeling how enhanced phosphorus availability might be sustained without violating mass balance requirements. Volcanism is the dominant carbon input, dictating peaks in weathering outputs up to twice modern values. However, times of weathering rate suppression may be more important for setting system behavior, and the late Paleozoic was the only extended period over which rates are expected to have remained lower than modern. Modeling results are consistent with terrestrial organic matter deposition that accompanied Paleozoic vascular plant evolution having suppressed weathering fluxes by providing an alternative sink of atmospheric CO2. Suppression would have then been progressively lifted as the crustal reservoir's holding capacity for terrestrial organic matter saturated back toward steady state with deposition of new organic matter balanced by erosion of older organic deposits. Although not an absolute increase, weathering fluxes returning to early Paleozoic conditions would represent a novel regime for the complex land biota that evolved in the interim. Volcanism-based peaks in Mesozoic weathering far surpass the modern rates that sustain a complex diversity of nitrogen-based symbioses; only in the late Paleozoic might these ecologies have been suppressed by significantly lower rates. Thus, angiosperms are posited to be another effect rather than proximal cause of Mesozoic upheaval.  相似文献   
72.
This study was conducted to evaluate the effects of wildfires on ectomycorrhizal (EM) fungal communities in Scots pine ( Pinus sylvestris ) stands. Below- and above-ground communities were analysed in terms of species richness and evenness by examining mycorrhizas and sporocarps in a chronosequence of burned stands in comparison with adjacent unburned late-successional stands. The internal transcribed spacer (ITS)-region (rDNA) of mycobionts from single mycorrhizas was digested with three restriction enzymes and compared with an ITS–restriction fragment length polymorphism (RFLP) reference database of EM sporocarps. Spatial variation seemed to be more prominent than the effects of fire on the EM fungal species composition. Most of the common species tended to be found in all sites, suggesting that EM fungal communities show a high degree of continuity following low-intensity wildfires. Species richness was not affected by fire, whereas the evenness of species distributions of mycorrhizas was lower in the burned stands. The diversity of EM fungi was relatively high considering that there were only three EM tree species present in the stands. In total, 135 EM taxa were identified on the basis of their RFLP patterns; 66 species were recorded as sporocarps, but only 11 of these were also recorded as mycorrhizas. The species composition of the below-ground community of EM fungi did not reflect that of the sporocarps produced. EM fungal species present in our ITS–RFLP reference database accounted for 54–99% of the total sporocarp production in the stands, but only 0–32% of the mycorrhizal abundance.  相似文献   
73.
The objective of this study was to investigate the phytoremediation potential of mycorrhizal systems for the remediation of aldrin-contaminated soils. Feltleaf willow (Salix alaxensis) and balsam poplar (Populus balsamifera) were grown in soil spiked with 0.8 mg/kg aldrin- (1,2,3,4,10-14C). Daconil2787® was employed to suppress indigenous mycorrhizal infection. After 100 days of greenhouse incubation, mycorrhizal infection in the fungicide-amended willows was found to be 2.5 fold lower than in controls. Mycorrhizal infection in the poplar systems was unaffected by fungicide addition. Mycorrhizae were correlated with radiolabel uptake in the willow systems (r = 0.79), and not as strongly in the poplar systems (r = 0.58). Most of the radiolabel in the root material was bound product regardless of mycorrhizal infection, but 12 to 21% was found to be extractable dieldrin. Aldrin was not detected in any vegetative matrix. Dieldrin constituted less than 1% of the radiolabel in the willow leaf material, accumulating to approximately 5 μg/kg. Dieldrin was not detected in the poplar leaves (MDL ≈ 1 μg/kg), although the poplars took up approximately the same amount of radiolabel as the willows. Water-soluble transformation products were formed in the vegetated soils (6 to 12%) and nonvegetated controls (1 to 2%).  相似文献   
74.
Launonen  T. M.  Ashton  D. H.  Keane  P. J. 《Plant and Soil》1999,210(2):273-283
This study was conducted to compare the effects on the growth of Eucalyptus regnans seedlings of unheated soil and soil heated to different extents (as indicated by soil colour–bright red or black) in burnt logging coupes, and to separate the effects of heating of the soil on direct nutrient availability and on morphotypes and effectiveness of ectomycorrhizae. Burnt soils were collected from three logging coupes burnt 2, 14 and 25 months previously and unbumt soil from adjacent regrowth forests. Compared to unburnt soil, the early seedling growth was stimulated in black burnt soil from all coupes (burnt 2, 14 and 25 months previously). Seedling growth was generally poor in red burnt soil, especially in soil collected 2 months after burning. However, the concentration of extractable P was extremely high in red burnt soil, especially in soil collected 2 months after burning. In black burnt soil, extractable P was increased in soil 2 months after burning, but not in the soils collected 14 or 25 months after burning. However, both total P content and concentration in seedlings were increased in all collections of black burnt soil. Frequency of ectomycorrhizae was high in seedlings grown in all black burnt soils, but the mycorrhizal mantles were poorly developed in seedlings in black burnt soil collected 2 months after burning. Seedlings were also ectomycorrhizal in red burnt soil, except in soil collected 2 months after burning. Fine root inocula from seedlings grown in black burnt soils collected 14 and 25 months after burning significantly stimulated both seedling growth and P uptake compared with the uninoculated control, whereas the fine root inocula from the seedlings grown in all the other soils did not. These results suggest that, in black burnt soil, both direct nutritional changes and changes in the ectomycorrhizae may contribute to seedling growth promotion after regeneration burns. The generally poor seedling growth in red burnt soils is likely to have been due to N deficiency as the seedlings in these soils were yellow-green and the tissue concentrations of N were significantly lower than in other treatments. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号