首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   175篇
  免费   9篇
  2021年   3篇
  2019年   1篇
  2017年   3篇
  2016年   1篇
  2015年   1篇
  2014年   6篇
  2013年   3篇
  2012年   11篇
  2011年   14篇
  2010年   5篇
  2009年   7篇
  2008年   9篇
  2007年   8篇
  2006年   11篇
  2005年   7篇
  2004年   7篇
  2003年   10篇
  2002年   8篇
  2001年   7篇
  2000年   9篇
  1999年   10篇
  1998年   2篇
  1997年   4篇
  1996年   6篇
  1995年   3篇
  1994年   4篇
  1993年   1篇
  1992年   3篇
  1991年   4篇
  1990年   1篇
  1989年   4篇
  1988年   3篇
  1987年   1篇
  1986年   4篇
  1985年   1篇
  1974年   2篇
排序方式: 共有184条查询结果,搜索用时 15 毫秒
71.
Summary To clarify that the presence of Ri T-DNA genes are not prerequisite for the light-induced bud formation in horseradish (Armoracia rusticana) hairy roots, leaf and root segments of nontransformed horseradish plants were used as explants. Bud formation from nontransformed tissues was observed in hormone-free medium under 16 h daylight conditions, but not under continuous darkness. To investigate the effects of growth regulators on bud formation, leaf and root explants were treated with auxin (1-naphthaleneacetic acid; NAA) and / or cytokinin (6-benzyl-aminopurine; BA). The most effective treatment in the dark to stimulate bud formation was BA at 1 mg·1-1. These results show that adventitious bud formation in horseradish can be induced by light and growth regulators, and especially cytokinin, may be involved in bud formation, irrespective of whether the tissues were transformed with Ri T-DNA.Abbreviations BA 6-benzyl-aminopurine - NAA 1-Naphthaleneacetic acid - MS Murashige & Skoog (1962) medium  相似文献   
72.
We isolated 607 independent nalidixic acid-resistant mutants from Bacillus subtilis. A 163 by DNA segment from a 5 portion of the gyrA gene was amplified from the DNA of each mutant strain. After heat denaturation, the product was subjected to gel electrophoresis to detect conformational polymorphism of single-strand DNA (PCR-SSCP analysis). Mobility patterns of the two DNA strands from all the mutant strains examined differed from those of the parental wild-type strains. The patterns were classified into 13 types, and the DNA sequence of each type was determined. A unique sequence alteration was found in mutants belonging to each of the 13 types, defining 13 gyrA alleles. Eight were single base pair substitutions, four were substitutions of two consecutive base pairs, and one was a substitution of three consecutive base pairs. Only three amino acid residues (Ser-84, Ala-85, and Glu-88) were altered in the deduced amino acid sequences of the mutated genes. We conclude that molecular typing based on the PCR-SSCP method is a powerful technique for the exhaustive identification of allelic variants among mutants selected for a phenotypic trait.  相似文献   
73.
The human and nonhuman primate ABO blood group gene shows relatively large numbers of nucleotide differences around the exon 7 region. In this study we determined intron 6 sequences for 9 alleles of common chimpanzee and for 3 alleles of bonobo to estimate nucleotide diversities among them. Sequence length polymorphisms are observed in this region as a repeat appears one to five times. From a phylogenetic network of intron 6 sequences of ABO blood group genes for humans, common chimpanzee, and bonobo, parallel substitutions and/or some kinds of convergent events are predicted in the chimpanzee lineage. We also estimated nucleotide diversities for common chimpanzee and bonobo ABO blood group genes; these values were 0.219% and 0.208%, respectively.  相似文献   
74.

Background  

Large nucleotide sequence datasets are becoming increasingly common objects of comparison. Complete bacterial genomes are reported almost everyday. This creates challenges for developing new multiple sequence alignment methods. Conventional multiple alignment methods are based on pairwise alignment and/or progressive alignment techniques. These approaches have performance problems when the number of sequences is large and when dealing with genome scale sequences.  相似文献   
75.
Gene phlG encoding 2,4-diacetylphloroglucinol hydrolase was cloned from Pseudomonas sp. YGJ3 and expressed in Escherichia coli. Recombinant PhlG was purified homogeneously. It required 2-mercaptoethanol for stability. Km for 2,4-diacetylphloroglucinol and kcat were determined to be 24 μM and 5.8 s(-1) respectively. CoCl2 specifically and significantly activated PhlG.  相似文献   
76.
Epigenetic modifications are crucial for the identity and stability of cells, and, when aberrant, can lead to disease. During mouse development, the genome-wide epigenetic states of pre-implantation embryos and primordial germ cells (PGCs) undergo extensive reprogramming. An improved understanding of the epigenetic reprogramming mechanisms that occur in these cells should provide important new information about the regulation of the epigenetic state of a cell and the mechanisms of induced pluripotency. Here, we discuss recent findings about the potential mechanisms of epigenetic reprogramming, particularly genome-wide DNA demethylation, in pre-implantation mouse embryos and PGCs.  相似文献   
77.
78.
The cis-regulatory element contributed to gaining humanness is of great interest in human evolutionary studies. A human-accelerated region exceeding neutral evolutionary rates, termed HACNS1, was recently reported as a positively selected sequence acquiring novel TF-binding sites responsible for human-specific gain of limb enhancer function. However, another possibility is loss of function in repressor element in HACNS1. Signature of the human substitutions in the 81-bp region infers that a GC-biased gene conversion (BGC) might create these seemingly excessive substitutions. To evaluate the 81-bp function, we performed transgenic mouse assay of the HACNS1 construct lacking the 81-bp region. The deleted construct showed similar enhancer activity to the intact human HACNS1, suggesting that the function of the human 81-bp region is not an activating enhancer but rather a disrupted repressor. This result infers that loss of function in the HACNS1 81-bp region, possibly via a BGC, played an important role in human-specific evolution.  相似文献   
79.
An efficient asymmetric synthesis of 1,4-dihydropyridine derivatives is described. The key step is the stereoselective Michael addition using t-butyl ester of l-valine as a chiral auxiliary to achieve good ee (>95% for all the tested experiments) and moderate yield. With this method, (+)-4-(3-chlorophenyl)-6-dimethoxymethyl-2-methyl-1,4-dihydropyridine-3,5-dicarboxylic acid cinnamyl ester was obtained and was characterized as a promising N-type calcium channel blocker with improved selectivity over L-type compared to its (−)- and racemic isomers.  相似文献   
80.
In many eukaryotes, condensins I and II associate with chromosomes in an ordered fashion during mitosis and play nonoverlapping functions in their assembly and segregation. Here we report for the first time the spatiotemporal dynamics and functions of the two condensin complexes during meiotic divisions in mouse oocytes. At the germinal vesicle stage (prophase I), condensin I is present in the cytoplasm, whereas condensin II is localized within the nucleus. After germinal vesicle breakdown, condensin II starts to associate with chromosomes and becomes concentrated onto chromatid axes of bivalent chromosomes by metaphase I. REC8 "glues" chromosome arms along their lengths. In striking contrast to condensin II, condensin I localizes primarily around centromeric regions at metaphase I and starts to associate stably with chromosome arms only after anaphase I. Antibody injection experiments show that condensin functions are required for many aspects of meiotic chromosome dynamics, including chromosome individualization, resolution, and segregation. We propose that the two condensin complexes play distinctive roles in constructing bivalent chromosomes: condensin II might play a primary role in resolving sister chromatid axes, whereas condensin I might contribute to monopolar attachment of sister kinetochores, possibly by assembling a unique centromeric structure underneath.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号