首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1003篇
  免费   72篇
  国内免费   3篇
  2023年   4篇
  2022年   9篇
  2021年   10篇
  2020年   13篇
  2019年   20篇
  2018年   23篇
  2017年   26篇
  2016年   22篇
  2015年   40篇
  2014年   44篇
  2013年   63篇
  2012年   75篇
  2011年   79篇
  2010年   45篇
  2009年   43篇
  2008年   44篇
  2007年   60篇
  2006年   60篇
  2005年   44篇
  2004年   70篇
  2003年   57篇
  2002年   64篇
  2001年   10篇
  2000年   12篇
  1999年   17篇
  1998年   17篇
  1997年   13篇
  1996年   19篇
  1995年   6篇
  1994年   5篇
  1993年   7篇
  1992年   8篇
  1990年   7篇
  1988年   2篇
  1987年   2篇
  1986年   2篇
  1984年   3篇
  1983年   3篇
  1982年   2篇
  1981年   5篇
  1980年   3篇
  1979年   2篇
  1976年   3篇
  1972年   1篇
  1971年   1篇
  1970年   1篇
  1968年   1篇
  1945年   2篇
  1926年   1篇
  1925年   1篇
排序方式: 共有1078条查询结果,搜索用时 15 毫秒
71.
This report elucidates the distinctions of redox properties between two uptake hydrogenases in Escherichia coli. Hydrogen uptake in the presence of mediators with different redox potential was studied in cell-free extracts of E. coli mutants HDK103 and HDK203 synthesizing hydrogenase 2 or hydrogenase 1, respectively. Both hydrogenases mediated H(2) uptake in the presence of high-potential acceptors (ferricyanide and phenazine methosulfate). H(2) uptake in the presence of low-potential acceptors (methyl and benzyl viologen) was mediated mainly by hydrogenase 2. To explore the dependence of hydrogen consumption on redox potential of media in cell-free extracts, a chamber with hydrogen and redox ( E(h)) electrodes was used. The mutants HDK103 and HDK203 exhibited significant distinctions in their redox behavior. During the redox titration, maximal hydrogenase 2 activity was observed at the E(h) below -80 mV. Hydrogenase 1 had maximum activity in the E(h) range from +30 mV to +110 mV. Unlike hydrogenase 2, the activated hydrogenase 1 retained activity after a fast shift of redox potential up to +500 mV by ferricyanide titration and was more tolerant to O(2). Thus, two hydrogenases in E. coli are complementary in their redox properties, hydrogenase 1 functioning at higher redox potentials and/or at higher O(2) concentrations than hydrogenase 2.  相似文献   
72.
betam, a muscle-specific protein, is structurally closely related to the X,K-ATPase beta subunits, but its intrinsic function is not known. In this study, we have expressed betam in Xenopus oocytes and have investigated its biosynthesis and processing as well as its putative role as a chaperone of X,K-ATPase alpha subunits, as a regulator of sarcoplasmic reticulum Ca(2+)-ATPase (SERCA), or as a Ca(2+)-sensing protein. Our results show that betam is stably expressed in the endoplasmic reticulum (ER) in its core glycosylated, partially trimmed form. Both full-length betam, initiated at Met(1), and short betam species, initiated at Met(89), are detected in in vitro translations as well as in Xenopus oocytes. betam cannot associate with and stabilize Na,K-ATPase (NK), or gastric and nongastric H,K-ATPase (HK) alpha isoforms. betam neither assembles stably with SERCA nor is its trypsin sensitivity or electrophoretic mobility influenced by Ca(2+). A mutant, in which the distinctive Glu-rich regions in the betam N-terminus are deleted, remains stably expressed in the ER and can associate with, but not stabilize X,K-ATPase alpha subunits. On the other hand, a chimera in which the ectodomain of betam is replaced with that of beta1 NK associates efficiently with alpha NK isoforms and produces functional Na,K-pumps at the plasma membrane. In conclusion, our results indicate that betam exhibits a cellular location and functional role clearly distinct from the typical X,K-ATPase beta subunits.  相似文献   
73.
The primary structure of chicken small heat shock protein (sHsp) with apparent molecular weight 25 kDa was refined and it was shown that this protein has conservative primary structure 74RALSRQLSSG(83) at Ser77 and Ser81, which are potential sites of phosphorylation. Recombinant wild-type chicken Hsp25, its three mutants, 1D (S15D), 2D (S77D+S81D) and 3D (S15D+S77D+S81D), as well as delR mutant with the primary structure 74RALS-ELSSG(82) at potential sites of phosphorylation were expressed and purified. It has been shown that the avian tissues contain three forms of Hsp25 having pI values similar to that of the wild-type protein, 1D and 2D mutants that presumably correspond to nonphosphorylated, mono- and di-phosphorylated forms of Hsp25. Recombinant wild-type protein, its 1D mutant and Hsp25, isolated from chicken gizzard, form stable high molecular weight oligomeric complexes. The delR, 2D and 3D mutants tend to dissociate and exist in the form of a mixture of high and low molecular weight oligomers. Point mutations mimicking phoshorylation decrease chaperone activity of Hsp25 measured by reduction of dithiothreitol induced aggregation of alpha-lactalbumin, but increase the chaperone activity of Hsp25 measured by heat induced aggregation of alcohol dehydrogenase. It is concluded that avian Hsp25 has a more stable quaternary structure than its mammalian counterparts and mutations mimicking phosphorylation differently affect chaperone activity of avian Hsp25, depending on the nature of target protein and the way of denaturing.  相似文献   
74.
Phosphatidylinositol (PtdIns) 4-kinases catalyze the conversion of PtdIns to PtdIns 4-phosphate, the major precursor of phosphoinositides that regulates a vast array of cellular processes. Based on enzymatic differences, two classes of PtdIns 4-kinase have been distinguished termed Types II and III. Type III kinases, which belong to the phosphatidylinositol (PI) 3/4-kinase family, have been extensively characterized. In contrast, little is known about the Type II enzymes (PI4KIIs), which have been cloned and sequenced very recently. PI4KIIs bear essentially no sequence similarity to other protein or lipid kinases; hence, they represent a novel and distinct branch of the kinase superfamily. Here we define the minimal catalytic domain of a rat PI4KII isoform, PI4KIIalpha, and identify conserved amino acid residues required for catalysis. We further show that the catalytic domain by itself determines targeting of the kinase to membrane rafts. To verify that the PI4KII family extends beyond mammalian sources, we expressed and characterized Drosophila PI4KII and its catalytic domain. Depletion of PI4KII from Drosophila cells resulted in a severe reduction of PtdIns 4-kinase activity, suggesting the in vivo importance of this enzyme.  相似文献   
75.
76.
77.
We present here a new model of the cellular dynamics that enable regeneration of complex biological morphologies. Biological cell structures are considered as an ensemble of mathematical points on the plane. Each cell produces a signal which propagates in space and is received by other cells. The total signal received by each cell forms a signal distribution defined on the cell structure. This distribution characterizes the geometry of the cell structure. If a part of this structure is removed, the remaining cells have two signals. They keep the value of the signal which they had before the amputation (memory), and they receive a new signal produced after the amputation. Regeneration of the cell structure is stimulated by the difference between the old and the new signals. It is stopped when the two signals coincide. The algorithm of regeneration contains certain rules which are essential for its functioning, being the first quantitative model of cellular memory that implements regeneration of complex patterns to a specific target morphology. Correct regeneration depends on the form and the size of the cell structure, as well as on some parameters of regeneration.  相似文献   
78.
ObjectivesWe analysed the impact of different parameters on genotypic tropism testing related to clinical outcome prediction in 108 patients on maraviroc (MVC) treatment.Methods87 RNA and 60 DNA samples were used. The viral tropism was predicted using the geno2pheno[coreceptor] and T-CUP tools with FPR cut-offs ranging from 1%-20%. Additionally, 27 RNA and 28 DNA samples were analysed in triplicate, 43 samples with the ESTA assay and 45 with next-generation sequencing. The influence of the genotypic susceptibility score (GSS) and 16 MVC-resistance mutations on clinical outcome was also studied.ResultsConcordance between single-amplification testing compared to ESTA and to NGS was in the order of 80%. Concordance with NGS was higher at lower FPR cut-offs. Detection of baseline R5 viruses in RNA and DNA samples by all methods significantly correlated with treatment success, even with FPR cut-offs of 3.75%-7.5%. Triple amplification did not improve the prediction value but reduced the number of patients eligible for MVC. No influence of the GSS or MVC-resistance mutations but adherence to treatment, on the clinical outcome was detected.ConclusionsProviral DNA is valid to select candidates for MVC treatment. FPR cut-offs of 5%-7.5% and single amplification from RNA or DNA would assure a safe administration of MVC without excluding many patients who could benefit from this drug. In addition, the new prediction system T-CUP produced reliable results.  相似文献   
79.
The bone marrow stroma constitutes the marrow‐blood barrier, which sustains immunochemical homoeostasis and protection of the haematopoietic tissue in sequelae of systemic bacterial infections. Under these conditions, the bone marrow stromal cells affected by circulating bacterial pathogens shall elicit the adaptive stress‐response mechanisms to maintain integrity of the barrier. The objective of this communication was to demonstrate (i) that in vitro challenge of mesenchymal stromal cells, i.e. colony‐forming unit fibroblasts (CFU‐F), with Staphylococcus epidermidis can activate the autophagy pathway to execute antibacterial defence response, and (ii) that homoeostatic shift because of the bacteria‐induced stress includes the mitochondrial remodelling and sequestration of compromised organelles via mitophagy. Implication of Drp1 and PINK1–PARK2‐dependent mechanisms in the mitophagy turnover of the aberrant mitochondria in mesenchymal stromal cells is investigated and discussed.  相似文献   
80.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号