首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   246篇
  免费   147篇
  国内免费   34篇
  2023年   4篇
  2022年   3篇
  2021年   3篇
  2020年   34篇
  2019年   45篇
  2018年   44篇
  2017年   48篇
  2016年   30篇
  2015年   31篇
  2014年   28篇
  2013年   19篇
  2012年   7篇
  2011年   16篇
  2010年   6篇
  2009年   3篇
  2008年   4篇
  2007年   5篇
  2006年   9篇
  2005年   7篇
  2004年   4篇
  2003年   5篇
  2002年   8篇
  2001年   2篇
  2000年   4篇
  1999年   9篇
  1998年   4篇
  1997年   5篇
  1996年   3篇
  1995年   5篇
  1994年   3篇
  1993年   4篇
  1992年   6篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1984年   4篇
  1982年   4篇
  1981年   2篇
排序方式: 共有427条查询结果,搜索用时 328 毫秒
61.
PURPOSE: To build and validate a radiomics-based nomogram for the prediction of pre-operation lymph node (LN) metastasis in esophageal cancer. PATIENTS AND METHODS: A total of 197 esophageal cancer patients were enrolled in this study, and their LN metastases have been pathologically confirmed. The data were collected from January 2016 to May 2016; patients in the first three months were set in the training cohort, and patients in April 2016 were set in the validation cohort. About 788 radiomics features were extracted from computed tomography (CT) images of the patients. The elastic-net approach was exploited for dimension reduction and selection of the feature space. The multivariable logistic regression analysis was adopted to build the radiomics signature and another predictive nomogram model. The predictive nomogram model was composed of three factors with the radiomics signature, where CT reported the LN number and position risk level. The performance and usefulness of the built model were assessed by the calibration and decision curve analysis. RESULTS: Thirteen radiomics features were selected to build the radiomics signature. The radiomics signature was significantly associated with the LN metastasis (P<0.001). The area under the curve (AUC) of the radiomics signature performance in the training cohort was 0.806 (95% CI: 0.732-0.881), and in the validation cohort it was 0.771 (95% CI: 0.632-0.910). The model showed good discrimination, with a Harrell’s Concordance Index of 0.768 (0.672 to 0.864, 95% CI) in the training cohort and 0.754 (0.603 to 0.895, 95% CI) in the validation cohort. Decision curve analysis showed our model will receive benefit when the threshold probability was larger than 0.15. CONCLUSION: The present study proposed a radiomics-based nomogram involving the radiomics signature, so the CT reported the status of the suspected LN and the dummy variable of the tumor position. It can be potentially applied in the individual preoperative prediction of the LN metastasis status in esophageal cancer patients.  相似文献   
62.
63.
OBJECTIVES: To predict epidermal growth factor receptor (EGFR) mutation status using quantitative radiomic biomarkers and representative clinical variables. METHODS: The study included 180 patients diagnosed as of non-small cell lung cancer (NSCLC) with their pre-therapy computed tomography (CT) scans. Using a radiomic method, 485 features that reflect the heterogeneity and phenotype of tumors were extracted. Afterwards, these radiomic features were used for predicting epidermal growth factor receptor (EGFR) mutation status by a least absolute shrinkage and selection operator (LASSO) based on multivariable logistic regression. As a result, we found that radiomic features have prognostic ability in EGFR mutation status prediction. In addition, we used radiomic nomogram and calibration curve to test the performance of the model. RESULTS: Multivariate analysis revealed that the radiomic features had the potential to build a prediction model for EGFR mutation. The area under the receiver operating characteristic curve (AUC) for the training cohort was 0.8618, and the AUC for the validation cohort was 0.8725, which were superior to prediction model that used clinical variables alone. CONCLUSION: Radiomic features are better predictors of EGFR mutation status than conventional semantic CT image features or clinical variables to help doctors to decide who need EGFR tyrosine kinase inhibitor (TKI) treatment.  相似文献   
64.
【目的】对采集自海南省白沙地区的黎族健康志愿者肠道菌群进行研究,旨在揭示黎族人肠道微生物群落结构特征及其与饮食的相关性。【方法】以海南省白沙黎族自治县征集的22名志愿者晨便为研究对象,应用基于16S r RNA基因V3–V4可变区的高通量测序技术测定其肠道菌群组成,并与其他民族肠道菌群进行比较分析,详细记录黎族22名志愿者的营养物质摄入情况,探索其肠道微生物群落结构特征及其与饮食的相关性。【结果】在门水平上,拟杆菌门(Bacteroidetes,58.96%)和硬壁菌门(Firmicutes,37.77%)在黎族志愿者肠道内含量最高;在属的水平上,普氏菌属(Prevotella,49.38%)在黎族健康志愿者肠道内含量最高。基于微生物群落α和β多样性的分析结果表明,黎族人肠道菌群与中国其他民族人群肠道菌群呈现出显著差异且α多样性显著低于其他民族,特征性差异菌属为:链型杆菌属(Catenibacterium)、普氏菌属(Prevotella)、巨型球菌属(Megasphaera)、巨单胞菌属(Megamonas)、考拉杆菌属(Phascolarctobacterium)和布劳特氏菌属(Blautia)。基于肠道核心微生物与营养物质相关性的研究显示,普氏粪杆菌(Faecalibacterium prausnitzii)与膳食纤维、Cu、Mg和Mn的摄入量呈现显著正相关,与脂肪和VB2的摄入量呈现显著负相关,而罗氏乳杆菌(Lactobacillus rogosae)与膳食纤维、Zn和Fe的摄入量呈显著正相关,与烟酸摄入量呈显著负相关。【结论】揭示了肠道微生物在不同地域和民族之间的差异,研究结果提供了一种通过膳食来优化菌群结构、调控宿主肠道微生态平衡的新思路。  相似文献   
65.
The high‐capacity cathode material V2O5·n H2O has attracted considerable attention for metal ion batteries due to the multielectron redox reaction during electrochemical processes. It has an expanded layer structure, which can host large ions or multivalent ions. However, structural instability and poor electronic and ionic conductivities greatly handicap its application. Here, in cell tests, self‐assembly V2O5·n H2O nanoflakes shows excellent electrochemical performance with either monovalent or multivalent cation intercalation. They are directly grown on a 3D conductive stainless steel mesh substrate via a simple and green hydrothermal method. Well‐layered nanoflakes are obtained after heat treatment at 300 °C (V2O5·0.3H2O). Nanoflakes with ultrathin flower petals deliver a stable capacity of 250 mA h g?1 in a Li‐ion cell, 110 mA h g?1 in a Na‐ion cell, and 80 mA h g?1 in an Al‐ion cell in their respective potential ranges (2.0–4.0 V for Li and Na‐ion batteries and 0.1–2.5 V for Al‐ion battery) after 100 cycles.  相似文献   
66.
67.
Rutile TiO2 inverse opals provide long cycle life and impressive structural stability when tested as anode materials for Li‐ion batteries. The capacity retention of TiO2 inverse opals (IOs) is greater than previously reported values for other rutile TiO2 nanomaterials, and the cycled crystalline phase and material interconnectivity is maintained over thousands of cycles. Consequently, this paper offers insight into the importance of optimizing the relationship between the structure and morphology on improving electrochemical performance of this abundant and low environmental impact material. TiO2 IOs show gradual capacity fading over 1000 and 5000 cycles, when cycled at specific currents of 75 and 450 mA g?1, respectively, while maintaining a high capacity and a stable overall cell voltage. TiO2 IOs achieve a reversible capacity of ≈170 and 140 mA h g?1 after the 100th and 1000th cycles, respectively, at a specific current of 75 mA g?1, corresponding to a capacity retention of ≈82.4%. The structural stability of the 3D IO phase from pristine rutile TiO2 to the conductive orthorhombic Li0.5TiO2 is remarkable and maintains its structural integrity. Image analysis conclusively shows that volumetric swelling is accommodated into the predefined pore space, and the IO periodicity remains constant and does not degrade over 5000 cycles.  相似文献   
68.
Surface properties of cathode particles play important roles in the transport of ions and electrons and they may ultimately dominate cathode's performance and stability in lithium‐ion batteries. Through the use of carefully prepared Li1.2Ni0.13Mn0.54Co0.13O2 crystal samples with six distinct morphologies, surface transition‐metal redox activities and crystal structural transformation are investigated as a function of surface area and surface crystalline orientation. Complementary depth‐profiled core‐level spectroscopy, namely, X‐ray absorption spectroscopy, electron energy loss spectroscopy, and atomic‐resolution scanning transmission electron microscopy, are applied in the study, presenting a fine example of combining advanced diagnostic techniques with a well‐defined model system of battery materials. The present study reports the following findings: (1) a thin layer of defective spinel with reduced transition metals, similar to what is reported on cycled conventional secondary particles in the literature, is found on pristine oxide surface even before cycling, and (2) surface crystal structure and chemical composition of both pristine and cycled particles are facet dependent. Oxide structural and cycling stabilities improve with maximum expression of surface facets stable against transition‐metal reduction. The intricate relationships among morphology, surface reactivity and structural transformation, electrochemical performance, and stability of the cathode materials are revealed.  相似文献   
69.
70.
The hybrid Mg2+/Li+ battery (MLIB) is a very promising energy storage technology that combines the advantage of the Li and Mg electrochemistry. However, previous research has shown that the battery performance is limited due to the strong dependence on the Li content in the dual Mg2+/Li+ electrolyte. This limitation can be circumvented by significantly improving the diffusion kinetics of Mg2+ in the electrode, so that both Li+ and Mg2+ ions can be utilized as charge carriers. Herein, a free‐standing interlayer expanded MoS2/graphene composite (E‐MG) is demonstrated as a cathode for MLIB. The key advantage of this cathode is to enable the efficient intercalation of both Mg2+ and Li+. The E‐MG electrode displays a reversible capacity of ≈300 mA h g?1 at 20 mA g?1 in an MLIB cell, corresponding to a specific energy density up to ≈316.9 W h kg?1, which is comparable to that of the state‐of‐the‐art Li‐ion batteries (LIBs) and has no dendrite formation. The composite electrode is stable against cycling with a coulombic efficiency close to 100% at 500 mA g?1. This new electrode design represents a significant step forward for building a safe and high‐density electrochemical energy storage system.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号