首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   315篇
  免费   24篇
  2022年   2篇
  2021年   2篇
  2020年   3篇
  2019年   4篇
  2018年   6篇
  2016年   7篇
  2015年   11篇
  2014年   11篇
  2013年   14篇
  2012年   13篇
  2011年   9篇
  2010年   6篇
  2009年   8篇
  2008年   4篇
  2007年   8篇
  2006年   13篇
  2005年   9篇
  2004年   11篇
  2003年   12篇
  2002年   5篇
  2001年   5篇
  2000年   17篇
  1999年   11篇
  1998年   6篇
  1997年   7篇
  1996年   5篇
  1995年   6篇
  1994年   7篇
  1993年   6篇
  1992年   6篇
  1990年   7篇
  1989年   6篇
  1988年   3篇
  1987年   4篇
  1986年   8篇
  1985年   9篇
  1984年   5篇
  1983年   7篇
  1982年   2篇
  1980年   2篇
  1979年   2篇
  1977年   11篇
  1976年   3篇
  1972年   2篇
  1970年   2篇
  1969年   3篇
  1967年   2篇
  1966年   3篇
  1913年   2篇
  1911年   5篇
排序方式: 共有339条查询结果,搜索用时 78 毫秒
61.
On coral reefs, herbivorous fishes consume benthic primary producers and regulate competition between fleshy algae and reef-building corals. Many of these species are also important fishery targets, yet little is known about their global status. Using a large-scale synthesis of peer-reviewed and unpublished data, we examine variability in abundance and biomass of herbivorous reef fishes and explore evidence for fishing impacts globally and within regions. We show that biomass is more than twice as high in locations not accessible to fisheries relative to fisheries-accessible locations. Although there are large biogeographic differences in total biomass, the effects of fishing are consistent in nearly all regions. We also show that exposure to fishing alters the structure of the herbivore community by disproportionately reducing biomass of large-bodied functional groups (scraper/excavators, browsers, grazer/detritivores), while increasing biomass and abundance of territorial algal-farming damselfishes (Pomacentridae). The browser functional group that consumes macroalgae and can help to prevent coral–macroalgal phase shifts appears to be most susceptible to fishing. This fishing down the herbivore guild probably alters the effectiveness of these fishes in regulating algal abundance on reefs. Finally, data from remote and unfished locations provide important baselines for setting management and conservation targets for this important group of fishes.  相似文献   
62.
The impact of anthropogenic activity on ecosystems has highlighted the need to move beyond the biogeographical delineation of species richness patterns to understanding the vulnerability of species assemblages, including the functional components that are linked to the processes they support. We developed a decision theory framework to quantitatively assess the global taxonomic and functional vulnerability of fish assemblages on tropical reefs using a combination of sensitivity to species loss, exposure to threats and extent of protection. Fish assemblages with high taxonomic and functional sensitivity are often exposed to threats but are largely missed by the global network of marine protected areas. We found that areas of high species richness spatially mismatch areas of high taxonomic and functional vulnerability. Nevertheless, there is strong spatial match between taxonomic and functional vulnerabilities suggesting a potential win–win conservation‐ecosystem service strategy if more protection is set in these locations.  相似文献   
63.
Anthropogenic impacts are increasingly affecting the world''s oceans. Networks of marine protected areas (MPAs) provide an option for increasing the ecological and economic benefits often provided by single MPAs. It is vital to empirically assess the effects of MPA networks and to prioritize the monitoring data necessary to explain those effects. We summarize the types of MPA networks based on their intended management outcomes and illustrate a framework for evaluating whether a connectivity network is providing an outcome greater than the sum of individual MPA effects. We use an analysis of an MPA network in Hawai''i to compare networked MPAs to non-networked MPAs to demonstrate results consistent with a network effect. We assert that planning processes for MPA networks should identify their intended outcomes while also employing coupled field monitoring-simulation modeling approaches, a powerful way to prioritize the most relevant monitoring data for empirically assessing MPA network performance.  相似文献   
64.
We report a reef ecosystem where corals may have lost their role as major reef engineering species but fish biomass and assemblage structure is comparable to unfished reefs elsewhere around the world. This scenario is based on an extensive assessment of the coral reefs of Farquhar Atoll, the most southern of the Seychelles Islands. Coral cover and overall benthic community condition at Farquhar was poor, likely due to a combination of limited habitat, localized upwelling, past coral bleaching, and cyclones. Farquhar Atoll harbors a relatively intact reef fish assemblage with very large biomass (3.2 t ha−1) reflecting natural ecological processes that are not influenced by fishing or other local anthropogenic factors. The most striking feature of the reef fish assemblage is the dominance by large groupers, snappers, and jacks with large (>1 m) potato cod (Epinephelus tukula) and marbled grouper (E. polyphekadion), commonly observed at many locations. Napoleon wrasse (Cheilinus undulatus) and bumphead parrotfish (Bolbometopon muricatum) are listed as endangered and vulnerable, respectively, but were frequently encountered at Farquhar. The high abundance and large sizes of parrotfishes at Farquhar also appears to regulate macroalgal abundance and enhance the dominance of crustose corallines, which are a necessary condition for maintenance of healthy reef communities. Overall fish biomass and biomass of large predators at Farquhar are substantially higher than other areas within the Seychelles, and are some of the highest recorded in the Indian Ocean. Remote islands like Farquhar Atoll with low human populations and limited fishing pressure offer ideal opportunities for understanding whether reefs can be resilient from global threats if local threats are minimized.  相似文献   
65.

Purpose

Despite the advent of FDA-approved therapeutics to a limited number of available targets (kinases and mTOR), PFS of kidney cancer (RCC) has been extended only one to two years due to the development of drug resistance. Here, we evaluate a novel therapeutic for RCC which targets the exportin-1 (XPO1) inhibitor.

Materials and Methods

RCC cells were treated with the orally available XPO1 inhibitor, KPT-330, and cell viability and Annexin V (apoptosis) assays, and cell cycle analyses were performed to evaluate the efficacy of KPT-330 in two RCC cell lines. Immunoblotting and immunofluorescence analysis were performed to validate mechanisms of XPO1 inhibition. The efficacy and on-target effects of KPT-330 were further analyzed in vivo in RCC xenograft mice, and KPT-330-resistant cells were established to evaluate potential mechanisms of KPT-330 resistance.

Results

KPT-330 attenuated RCC viability through growth inhibition and apoptosis induction both in vitro and in vivo, a process in which increased nuclear localization of p21 by XPO1 inhibition played a major role. In addition, KPT-330 resistant cells remained sensitive to the currently approved for RCC multi-kinase inhibitors (sunitinib, sorafenib) and mTOR inhibitors (everolimus, temsirolimus), suggesting that these targeted therapeutics would remain useful as second line therapeutics following KPT-330 treatment.

Conclusion

The orally-available XPO1 inhibitor, KPT-330, represents a novel target for RCC whose in vivo efficacy approaches that of sunitinib. In addition, cells resistant to KPT-330 retain their ability to respond to available RCC therapeutics suggesting a novel approach for treatment in KPT-330-naïve as well as -resistant RCC patients.  相似文献   
66.
Photosynthetic (oxygen evolution) and growth (biomass increase) responses to ambient pH and inorganic carbon (Ci) supply were determined for Porphyralinearis grown in 0.5 L glass cylinders in the laboratory, or in 40 L fibreglass outdoor tanks with running seawater. While net photosynthetic rates were uniform at pH 6.0–8.0, dropping only at pH 8.7, growth rates were significantly affected by pH levels other than that of seawater (c. pH 8.3). In glass cylinders, weekly growth rates averaged 76% at external pH 8.0, 13% at pH 8.7 and 26% at pH 7.0. Photosynthetic O2 evolution on a daily basis(i.e. total O2 evolved during day time less total O2 consumed during night time) was similar to the growth responses at all experimental pH levels, apparently due to high dark respiration rates measured at acidic pH. Weekly growth rates averaged 53% in algae grown in fibreglass tanks aerated with regular air (360 mg L-1 CO2) and 28% in algae grown in tanks aerated with CO2-enriched air (750 mg L-1 CO2). The pH of the seawater medium in which P. linear is was grown increased slightly during the day and only rarely reached 9.0. The pH at the boundary layer of algae submerged in seawater increased in response to light reaching, about pH 8.9 within minutes, or remained unchanged for algae submerged in a CO2-free artificial sea water medium. Photosynthesis of P. linearissaturated at Ci concentrations of seawater (K0.5560 μM at pH 8.2) and showed low photosynthetic affinity for CO2(K0.5 61 μM) at pH 6.0. It is therefore concluded that P. linearisuses primarily CO2 with HCO3 - being an alternative source of Ci for photosynthesis. Its fast growth could be related to the enzyme carbonic anhydrase whose activity was detected intra- and extracellularly. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   
67.
We recently showed that thyroglobulin (Tg) is a heparin-binding protein and that heparin inhibits binding of Tg to its endocytic receptor megalin (gp330). Here we have identified a heparin-binding region in the carboxyl-terminal portion of rat Tg and have studied its involvement in megalin binding. Rat thyroid extracts, obtained by ammonium sulfate precipitation, were separated by column fractionation into four Tg polypeptides, with apparent masses of 660, 330, 210, and 50 kDa. As assessed by enzyme-linked immunoadsorbent assays and ligand blot binding assays, megalin bound to intact Tg (660 and 330 kDa) and, to a even greater extent, to the 210-kDa Tg polypeptide. Furthermore, the 210-kDa Tg polypeptide inhibited megalin binding to intact Tg by approximately 70%. Solid phase assays showed binding of biotin-labeled heparin to intact Tg and to the 210-kDa Tg polypeptide. We characterized the 210-kDa Tg polypeptide by matrix-assisted laser desorption/ionization mass spectrometry analysis and found that it corresponds to the carboxyl-terminal portion of rat Tg. We developed a synthetic peptide corresponding to a 15-amino acid sequence in the carboxyl-terminal portion of rat Tg (Arg(689)-Lys(703)), containing a heparin-binding consensus sequence (SRRLKRP) and demonstrated heparin binding to this peptide. A rabbit antibody raised against the peptide recognized intact Tg in its native conformation and under denaturing conditions. This antibody markedly reduced heparin-binding to intact Tg, indicating that the region of native Tg corresponding to the peptide is involved in heparin binding. Furthermore, the anti-Tg peptide antibody almost completely inhibited binding of megalin to Tg, suggesting that the Tg region containing the peptide sequence is required for megalin binding. Physiologically, Tg binding to megalin on thyroid cells may be facilitated by Tg interaction with heparin-like molecules (heparan sulfate proteoglycans) via adjacent binding sites.  相似文献   
68.
Rat C6 glioma is a cell line that has been used extensively as a model of astroglia. Although this cell line retains many of the properties of developing glia, it does not resemble morphologically the specialized form of glia found embryonically, the radial glia. In experiments designed to study a mutant form of receptor protein tyrosine phosphatase β, we isolated a subclone of C6 called C6-R which, like radial glia, assumes a highly polarized radial-like morphology in culture. C6-R cells and, to a somewhat lesser extent, C6 cells, express cytoskeletal proteins found in developing astroglia including glial fibrillary acidic protein and RC1. As seen with radial glia, cerebellar granule cell bodies and neurites migrated along radial processes of C6-R cells in culture. Morphological analysis of dye-labeled cells injected into the developing forebrain revealed that a large fraction (∼60%) of the C6-R cells in the cortex assumed a radial orientation and about half of these (∼30%) made contact with the pial surface. In contrast, the parental C6 cells generally formed aggregates and only displayed a radial alignment when associated with blood vessels. These results suggest that we have generated a stable cell line from C6 glioma which has adopted certain key features of radial glia, including the ability to promote neuronal migration in culture and integrate radially in vivo in response to local cues. This cell line may be particularly useful for studying receptors on radial glia that mediate neuronal migration. © 1998 John Wiley & Sons, Inc. J Neurobiol 37: 291–304, 1998  相似文献   
69.
70.
The liver cell adhesion molecule (L-CAM) and N-cadherin or adherens junction-specific CAM (A-CAM) are structurally related cell surface glycoproteins that mediate calcium-dependent adhesion in different tissues. We have isolated and characterized a full-length cDNA clone for chicken N-cadherin and used this clone to transfect S180 mouse sarcoma cells that do not normally express N-cadherin. The transfected cells (S180cadN cells) expressed N-cadherin on their surfaces and resembled S180 cells transfected with L-CAM (S180L cells) in that at confluence they formed an epithelioid sheet and displayed a large increase in the number of adherens and gap junctions. In addition, N-cadherin in S180cadN cells, like L-CAM in S180L cells, accumulated at cellular boundaries where it was colocalized with cortical actin. In S180L cells and S180cadN cells, L-CAM and N-cadherin were seen at sites of adherens junctions but were not restricted to these areas. Adhesion mediated by either CAM was inhibited by treatment with cytochalasin D that disrupted the actin network of the transfected cells. Despite their known structural similarities, there was no evidence of interaction between L-CAM and N-cadherin. Doubly transfected cells (S180L/cadN) also formed epithelioid sheets. In these cells, both N-cadherin and L-CAM colocalized at areas of cell contact and the presence of antibodies to both CAMs was required to disrupt the sheets of cells. Studies using divalent antibodies to localize each CAM at the cell surface or to perturb their distributions indicated that in the same cell there were no interactions between L-CAM and N-cadherin molecules. These data suggest that the Ca(++)-dependent CAMs are likely to play a critical role in the maintenance of epithelial structures and support a model for the segregation of CAM mediated binding. They also provide further support for the so-called precedence hypothesis that proposes that expression and homophilic binding of CAMs are necessary for formation of junctional structures in epithelia.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号