首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   858篇
  免费   109篇
  2021年   15篇
  2019年   11篇
  2017年   15篇
  2016年   20篇
  2015年   32篇
  2014年   31篇
  2013年   48篇
  2012年   38篇
  2011年   36篇
  2010年   22篇
  2009年   19篇
  2008年   47篇
  2007年   30篇
  2006年   37篇
  2005年   34篇
  2004年   27篇
  2003年   31篇
  2002年   26篇
  2001年   28篇
  2000年   36篇
  1999年   25篇
  1998年   13篇
  1997年   5篇
  1996年   6篇
  1995年   8篇
  1994年   14篇
  1993年   10篇
  1992年   13篇
  1991年   17篇
  1990年   15篇
  1989年   20篇
  1988年   17篇
  1987年   17篇
  1986年   10篇
  1985年   11篇
  1984年   11篇
  1983年   11篇
  1982年   8篇
  1980年   5篇
  1979年   8篇
  1978年   11篇
  1977年   15篇
  1976年   5篇
  1975年   9篇
  1974年   8篇
  1973年   13篇
  1972年   7篇
  1970年   8篇
  1968年   5篇
  1967年   7篇
排序方式: 共有967条查询结果,搜索用时 15 毫秒
61.
Assignment of the appaloosa coat colour gene (LP) to equine chromosome 1   总被引:1,自引:0,他引:1  
A single autosomal dominant locus, leopard complex (LP) controls the presence of appaloosa pigmentation patterns in the horse. The causative gene for LP is unknown. This study was undertaken to map LP in the horse. Two paternal half sib families segregating for the LP locus and including a total of 47 offspring were used to perform a genome scan which localized LP to horse chromosome 1 (ECA1). LP was linked to ASB08 (LOD = 9.99 at Theta = 0.02) and AHT21 (LOD = 5.03 at Theta = 0.14). To refine the map position of LP, eight microsatellite markers on ECA1 (UM041, LEX77, 1CA41, TKY374, COR046, 1CA32, 1CA43, and TKY002) were analysed in the two half sib families. Results from this linkage analysis showed LP was located in the interval between ASB08 and 1CA43. Tight junction protein (TJP1), which lies within the LP interval on ECA1, was used to determine the homologous chromosomes in humans (HSA15) and mice (mouse chromosome 7). We propose that the pink eyed dilution (p) gene and transient receptor potential cation channel subfamily M, member 1 (TRPM1) are positional candidate genes for LP.  相似文献   
62.
63.
64.
Fetal to maternal blood flow matching in the placenta, necessary for optimal fetal blood oxygenation, may occur via hypoxic fetoplacental vasoconstriction (HFPV). We hypothesized that HFPV is mediated by K(+) channel inhibition in fetoplacental vascular smooth muscle, as occurs in several other O(2)-sensitive tissues. With the use of an isolated human placental cotyledon perfused at a constant flow rate, we found that hypoxia reversibly increased perfusion pressure by >20%. HFPV was unaffected by cyclooxygenase or nitric oxide synthase inhibition. HFPV and 4-aminopyridine, an inhibitor of voltage-dependent K(+) (K(v)) channels, increased pressure in a nonadditive manner, suggesting they act via a common mechanism. Iberiotoxin, a large conductance Ca(2+)-sensitive K(+) (BK(Ca)) channel inhibitor, had little effect on normoxic pressure. Immunoblotting and RT-PCR showed expression of several putative O(2)-sensitive K(+) channels in peripheral fetoplacental vessels. In patch-clamp experiments with smooth muscle cells isolated from peripheral fetoplacental arteries, hypoxia reversibly inhibited K(v) but not BK(Ca) or ATP-dependent currents. We conclude that human fetoplacental vessels constrict in response to hypoxia. This response is largely mediated by hypoxic inhibition of K(v) channels in the smooth muscle of small fetoplacental arteries.  相似文献   
65.
Sheep scrapie is a prototypical transmissible spongiform encephalopathy (TSE), and the most widespread of these diseases. Experimental study of TSE infectious agents from sheep and other species essentially depends on bioassays in rodents. Transmission of natural sheep scrapie to conventional mice commonly requires one or two years. In an effort to develop laboratory models in which investigations on the sheep TSE agent would be facilitated, we have established mice and cell lines that were genetically engineered to express ovine PrP protein and examined their susceptibility to the infection. A series of transgenic mice lines (tgOv) expressing the high susceptibility allele (VRQ) of the ovine PrP gene from different constructs was expanded. Following intracerebral inoculation with natural scrapie isolates, all animals developed typical TSE neurological signs and accumulated abnormal PrP in their brain. The survival time in the highest expressing tgOv lines ranged from 2 to 7 months, depending on the isolate. It was inversely related to the brain PrP content, and essentially unchanged on further passaging. Ovine PrP transgene expression thus enhanced scrapie disease transmission from sheep to mice. Such tgOv mice may bring new opportunities for analysing the natural variation of scrapie strains and measuring infectivity. As no relevant cell culture models for agents of naturally-occurring TSE exist, we have explored various strategies in order to obtain stable cell lines that would propagate the sheep agent ex vivo without prior adaptation to rodent. In one otherwise refractory rabbit epithelial cell line, a regulable expression of ovine PrP was achieved and found to enable an efficient replication of the scrapie agent in inoculated cultures. Cells derived from sheep embryos or from tgOv mice were also used in an attempt to establish permissive cell lines derived from the nervous system. Cells engineered to express PrP proteins of a specified sequence may thus represent a promising strategy to further explore, at the cellular level, various aspects of TSE diseases.  相似文献   
66.
67.
68.
69.
Many forensically important calliphorids, sarcophagids and muscids (Diptera) oviposit or larviposit on corpses only during the early stages of decomposition, yet individuals may attend bodies throughout decay. A field study was conducted to investigate how patterns of carcass use and attendance by some fly species are affected by decomposition. Five fly traps were placed in the forest and baited with whole, fresh piglet carcasses. Piglets decomposed in traps throughout the experiment, and all were skeletonized within 6 days. Flies were trapped at both early and late decomposition stages, and the species and population structures of trap catches were compared. More flies attended carcasses early rather than late in decay. For all species, flies attending early were mainly gravid females, but few gravid females attended late in decay. No females ovi- or larviposited late in decay, whereas females of all fly species deposited offspring early in decay. The number of males trapped of each species correlated positively with the number of females with eggs at early development stages. Observations were made of fly predation by European wasps Vespula germanica Fabricius (Hymenoptera, Vespidae) and jumper ants Myrmecia pilosula Smith (Hymenoptera, Formicidae) throughout the experiment. There was a higher risk for smaller fly species of being killed following predator attack. Ants and wasps attacked smaller fly species, whereas only wasps attacked larger fly species.  相似文献   
70.
The role of histone hyperacetylation in regard to growth, differentiation, and apoptosis in colon cancer cells was assessed in an in vitro model system. HT-29 cells were grown in +/-10% fetal bovine serum with either 5 mM sodium butyrate or 0.3 microM trichostatin A [single dose (T) or 3 doses 8 h apart (TR)] for 24 h. Serum-starved HT-29 cells were further treated with epidermal growth factor or insulin-like growth factor I for an additional 24 h. Apoptosis was quantified with propidium iodide and characterized by electron microscopy. Northern blot analyses were performed with cDNA probes specific for intestinal alkaline phosphatase, Na-K-2Cl cotransporter, the cell cycle inhibitor p21, and the actin control. Flow cytometric analysis revealed a time-dependent growth suppression along with early induction of p21 mRNA in the butyrate, T, and TR groups. Histone hyperacetylation, assessed by acid-urea-triton gel electrophoresis, was transient in the T group but persisted for up to 24 h in the butyrate and TR groups. Induction of apoptosis, growth factor unresponsiveness, and differentiation occurred in the butyrate- and TR-treated cells but not those treated with a single dose of trichostatin A. Thus transient hyperacetylation of histones is sufficient to induce p21 expression and produce cellular growth arrest, but prolonged histone hyperacetylation is required for induction of the programs of differentiation, apoptosis, and growth factor unresponsiveness.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号