首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   895篇
  免费   76篇
  国内免费   34篇
  2023年   14篇
  2022年   7篇
  2021年   13篇
  2020年   28篇
  2019年   30篇
  2018年   23篇
  2017年   23篇
  2016年   32篇
  2015年   41篇
  2014年   32篇
  2013年   45篇
  2012年   32篇
  2011年   34篇
  2010年   44篇
  2009年   36篇
  2008年   40篇
  2007年   46篇
  2006年   49篇
  2005年   34篇
  2004年   32篇
  2003年   31篇
  2002年   28篇
  2001年   23篇
  2000年   30篇
  1999年   25篇
  1998年   21篇
  1997年   14篇
  1996年   22篇
  1995年   10篇
  1994年   6篇
  1993年   9篇
  1992年   9篇
  1990年   7篇
  1989年   7篇
  1988年   8篇
  1987年   5篇
  1985年   10篇
  1984年   8篇
  1983年   6篇
  1982年   10篇
  1980年   6篇
  1979年   5篇
  1978年   4篇
  1977年   9篇
  1976年   6篇
  1975年   10篇
  1974年   6篇
  1973年   7篇
  1972年   8篇
  1971年   8篇
排序方式: 共有1005条查询结果,搜索用时 453 毫秒
51.
We present fast new algorithms for evaluating trees with respectto least squares and minimum evolution (ME), the most commonlyused criteria for inferring phylogenetic trees from distancedata. The new algorithms include an optimal O(N2) time algorithmfor calculating the edge (branch or internode) lengths on atree according to ordinary or unweighted least squares (OLS);an O(N3) time algorithm for edge lengths under weighted leastsquares (WLS) including the Fitch-Margoliash method; and anoptimal O(N4) time algorithm for generalized least-squares (GLS)edge lengths (where N is the number of taxa in the tree). TheME criterion is based on the sum of edge lengths. Consequently,the edge lengths algorithms presented here lead directly toO(N2), O(N3), and O(N4) time algorithms for ME under OLS, WLS,and GLS, respectively. All of these algorithms are as fast asor faster than any of those previously published, and the algorithmsfor OLS and GLS are the fastest possible (with respect to orderof computational complexity). A major advantage of our new methodsis that they are as well adapted to multifurcating trees asthey are to binary trees. An optimal algorithm for determiningpath lengths from a tree with given edge lengths is also developed.This leads to an optimal O(N2) algorithm for OLS sums of squaresevaluation and corresponding O(N3) and O(N4) time algorithmsfor WLS and GLS sums of squares, respectively. The GLS algorithmis time-optimal if the covariance matrix is already inverted.The speed of each algorithm is assessed analytically—thespeed increases we calculate are confirmed by the dramatic speedincreases resulting from their implementation in PAUP* 4.0.The new algorithms enable far more extensive tree searches andstatistical evaluations (e.g., bootstrap, parametric bootstrap,or jackknife) in the same amount of time. Hopefully, the fastalgorithms for WLS and GLS will encourage the use of these criteriafor evaluating trees and their edge lengths (e.g., for approximatedivergence time estimates), since they should be more statisticallyefficient than OLS.  相似文献   
52.
53.
随着质谱技术的快速发展,蛋白质组学已成为继基因组学、转录组学之后的又一研究热点,寻找可靠的差异表达蛋白对于生物标记物的发现至关重要.因此,如何准确、灵敏地筛选出差异蛋白已成为基于质谱的定量蛋白质组学的主要研究内容之一.目前,针对该问题的研究方法众多,但这些方法策略的适用范围不尽相同.总体来说,基于质谱技术筛选差异蛋白的统计学策略可以分为3类:基于经典统计学派的策略、基于贝叶斯学派的统计检验策略和其他策略,这3类方法有各自的应用范围、特点及不足.此外,筛选过程还将产生部分假阳性结果,可以采用其他方法对差异表达蛋白的质量进行控制,以提高统计检验结果的可靠性.  相似文献   
54.
Over the last decades, the populations of Austropotamobius pallipes have decreased markedly all over Europe. If we evaluate the ecological factors that determine its presence, we will have information that could guide conservation decisions. This study aims to investigate the chemical-physical demands of A. pallipes in NW Italy. To this end, we investigated 98 sites. We performed Principal Component Analysis using chemical-physical parameters, collected in both presence and absence sites. We then used principal components with eigenvalue > 1 to run Discriminant Function Analysis and Logistic Regression. The statistics on the concentration of Ca2+, water hardness, pH and BOD5 were significantly different in the presence and in the absence sites. pH and BOD5 played the most important role in separating the presence from the absence locations. These findings are further evidence that we should reduce dissolved organic matter and fine particles in order to contribute to species management and conservation.  相似文献   
55.
56.
Patterns of DNA sequence polymorphisms can be used to understand the processes of demography and adaptation within natural populations. High-throughput generation of DNA sequence data has historically been the bottleneck with respect to data processing and experimental inference. Advances in marker technologies have largely solved this problem. Currently, the limiting step is computational, with most molecular population genetic software allowing a gene-by-gene analysis through a graphical user interface. An easy-to-use analysis program that allows both high-throughput processing of multiple sequence alignments along with the flexibility to simulate data under complex demographic scenarios is currently lacking. We introduce a new program, named DnaSAM, which allows high-throughput estimation of DNA sequence diversity and neutrality statistics from experimental data along with the ability to test those statistics via Monte Carlo coalescent simulations. These simulations are conducted using the ms program, which is able to incorporate several genetic parameters (e.g. recombination) and demographic scenarios (e.g. population bottlenecks). The output is a set of diversity and neutrality statistics with associated probability values under a user-specified null model that are stored in easy to manipulate text file.  相似文献   
57.
Health care utilization and outcome studies call for hierarchical approaches. The objectives were to predict major complications following percutaneous coronary interventions by health providers, and to compare Bayesian and non‐Bayesian sample size calculation methods. The hierarchical data structure consisted of: (1) Strata: PGY4, PGY7, and physician assistant as providers with varied experiences; (2) Clusters: ks providers per stratum; (3) Individuals: ns patients reviewed by each provider. The main outcome event illustrated was mortality modeled by a Bayesian beta‐binomial model. Pilot information and assumptions were utilized to elicit beta prior distributions. Sample size calculations were based on the approximated average length, fixed at 1%, of 95% posterior intervals of the mean event rate parameter. Necessary sample sizes by both non‐Bayesian and Bayesian methods were compared. We demonstrated that the developed Bayesian methods can be efficient and may require fewer subjects to satisfy the same length criterion.  相似文献   
58.
Because to defect is the evolutionary stable strategy in the prisoner’s dilemma game (PDG), understanding the mechanism generating and maintaining cooperation in PDG, i.e. the paradox of cooperation, has intrinsic significance for understanding social altruism behaviors. Spatial structure serves as the key to this dilemma. Here, we build the model of spatial PDG under a metapopulation framework: the sub-populations of cooperators and defectors obey the rules in spatial PDG as well as the colonization–extinction process of metapopulations. Using the mean-field approximation and the pair approximation, we obtain the differential equations for the dynamics of occupancy and spatial correlation. Cellular automaton is also built to simulate the spatiotemporal dynamics of the spatial PDG in metapopulations. Join-count statistics are used to measure the spatial correlation as well as the spatial association of the metapopulation. Simulation results show that the distribution is self-organized and that it converges to a static boundary due to the boycotting of cooperators to defectors. Metapopulations can survive even when the colonization rate is lower than the extinction rate due to the compensation of cooperation rewards for extinction debt. With a change of parameters in the model, a metapopulation can consist of pure cooperators, pure defectors, or cooperator–defector coexistence. The necessary condition of cooperation evolution is the local colonization of a metapopulation. The spatial correlation between the cooperators tends to be weaker with the increase in the temptation to defect and the habitat connectivity; yet the spatial correlation between defectors becomes stronger. The relationship between spatial structure and the colonization rate is complicated, especially for cooperators. The metapopulation may undergo a temporary period of prosperity just before the extinction, even while the colonization rate is declining. An erratum to this article can be found at  相似文献   
59.
In special coordinates (codon position-specific nucleotide frequencies), bacterial genomes form two straight lines in 9-dimensional space: one line for eubacterial genomes, another for archaeal genomes. All the 348 distinct bacterial genomes available in Genbank in April 2007, belong to these lines with high accuracy. The main challenge now is to explain the observed high accuracy. The new phenomenon of complementary symmetry for codon position-specific nucleotide frequencies is observed. The results of analysis of several codon usage models are presented. We demonstrate that the mean-field approximation, which is also known as context-free, or complete independence model, or Segre variety, can serve as a reasonable approximation to the real codon usage. The first two principal components of codon usage correlate strongly with genomic G+C content and the optimal growth temperature, respectively. The variation of codon usage along the third component is related to the curvature of the mean-field approximation. First three eigenvalues in codon usage PCA explain 59.1%, 7.8% and 4.7% of variation. The eubacterial and archaeal genomes codon usage is clearly distributed along two third order curves with genomic G+C content as a parameter.  相似文献   
60.
F(st) is a measure of genetic differentiation in a subdivided population. Sewall Wright observed that F(st)=1/1+2Nm in a haploid diallelic infinite island model, where N is the effective population size of each deme and m is the migration rate. In demonstrating this result, Wright relied on the infinite size of the population. Natural populations are not infinite and therefore they change over time due to genetic drift. In a finite population, F(st) becomes a random variable that evolves over time. In this work we ask, given an initial population state, what are the dynamics of the mean and variance of F(st) under the finite island model? In application both of these quantities are critical in the evaluation of F(st) data. We show that after a time of order N generations the mean of F(st) is slightly biased below 1/1+2Nm. Further we show that the variance of F(st) is of order 1/d where d is the number of demes in the population. We introduce several new mathematical techniques to analyze coalescent genealogies in a dynamic setting.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号