首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1998篇
  免费   234篇
  国内免费   63篇
  2024年   2篇
  2023年   29篇
  2022年   22篇
  2021年   72篇
  2020年   104篇
  2019年   132篇
  2018年   98篇
  2017年   73篇
  2016年   70篇
  2015年   73篇
  2014年   116篇
  2013年   155篇
  2012年   101篇
  2011年   120篇
  2010年   77篇
  2009年   57篇
  2008年   73篇
  2007年   98篇
  2006年   87篇
  2005年   82篇
  2004年   63篇
  2003年   61篇
  2002年   64篇
  2001年   45篇
  2000年   37篇
  1999年   27篇
  1998年   43篇
  1997年   45篇
  1996年   31篇
  1995年   38篇
  1994年   25篇
  1993年   32篇
  1992年   25篇
  1991年   19篇
  1990年   24篇
  1989年   11篇
  1988年   8篇
  1987年   10篇
  1986年   10篇
  1985年   15篇
  1984年   9篇
  1983年   1篇
  1981年   6篇
  1980年   1篇
  1979年   2篇
  1977年   1篇
  1958年   1篇
排序方式: 共有2295条查询结果,搜索用时 15 毫秒
51.
姜黄素预防高原缺氧大鼠认知功能障碍的电生理机制   总被引:1,自引:1,他引:0  
目的:探讨姜黄素(curcumin)预防高原缺氧大鼠认知功能障碍的电生理机制。方法:将30只成年雄性SD大鼠随机分为健康对照组、模型组(Model组)、姜黄素[按体重60mg/(kg.d)]治疗组(curcumin组)。造模后,检测脑片水平的海马的LTP变化,并运用膜片钳技术检测海马CA1区神经元的电生理变化。结果:(1)给予HFS刺激后各组均可诱发LTP并持续1h以上,与对照组比较模型组组HFS刺激后LTP明显被抑制(P<0.05),姜黄素可减轻缺氧所致的LTP抑制(P<0.05);(2)高原缺氧使海马CA1神经元阈电位升高,动作电位(AP)数量减少,兴奋性降低,姜黄素干预可明显减轻高原缺氧对细胞神经元的抑制。结论:姜黄素可显著改善高原缺氧大鼠认知功能障碍,其可能机制是通过维持海马CA1细胞的兴奋性减轻高原缺氧对认知功能的损伤。  相似文献   
52.
ADAMTS1 (a disintegrin and metalloproteinase with thrombospondin motifs 1) is an early immediate gene. We have previously reported that ADAMTS1 was strongly induced by hypoxia. In this study, we investigated whether ADAMTS1 promoter‐driven reporter signal is detectable by acute hypoxia. We constructed the GFP (green fluorescent protein) expression vector [AHR (acute hypoxia‐response sequence)‐GFP] under the control of ADAMTS1 promoter and compared it with the constitutive GFP‐expressing vector under the control of CMV (cytomegalovirus promoter‐GFP). We transduced AHR‐GFP and examined whether GFP signals can be detected under the acute hypoxia. When the human umbilical vein [HUVEC (human umbilical vein endothelial cells)] was transduced under normoxia, there were few GFP signals, while CMV‐GFP showed considerable GFP signals. When HUVEC was stimulated with hypoxia, GFP signals from AHR‐GFP gene were induced under hypoxic conditions. Notably, the GFP signals peaked at 3 h under hypoxia. In ischaemic hind limb model, transduced AHR‐GFP showed hypoxic induction of GFP signals. In summary, we have demonstrated that the AHR system induced the reporter gene expression by acute hypoxia, and its induction is transient. This is the first report showing the unique acute hypoxia‐activated gene expression system.  相似文献   
53.
Oxygen (O2) concentrations in bone marrow vary from 4% in capillaries to <0.1% in subendosteum, in which hematopoietic stem cells reside in specific niches. Culture at low O2 concentrations (3, 1 and 0.1%) influences hematopoietic stem and progenitor cells survival, proliferation and differentiation, depending on their level of differentiation. Culture of human CD34+ cells at low O2 concentrations (O2 ⩽3%) maintains stem cell engraftment potential better than at 20% O2 (NOD/Scid xenograft model). In contrast, progenitors disappear from cultures at/or <1% O2 concentrations. A very low O2 concentration (0.1%) induces CD34+ quiescence in G0. The exploration of molecules and mechanisms involved in hematopoietic stem and progenitor cells'' quiescence and differentiation related to low O2 concentrations is unfeasible with primary CD34+ cells. Therefore, we performed it using murine hematopoietic nonleukemic factor-dependent cell Paterson (FDCP)-Mix progenitor cell line. The culture of the FDCP-Mix line at 0.1% O2 induced in parallel G0 quiescence and granulo-monocytic differentiation of most cells, whereas a minority of undifferentiated self-renewing cells remained in active cell cycle. Hypoxia also induced hypophosphorylation of pRb and increased the expression of p27KIP1, the two proteins that have a major role in the control of G0 and G1 to S-phase transition.  相似文献   
54.
Despite the improvement in acute myeloid leukemia (AML) treatments, most patients had a poor prognosis and suffered from chemoresistance and disease relapse. Therefore, there is an urgent need for elucidation of mechanism(s) underlying drug resistance in AML. In the present study, we found that AML cells showed less susceptibility to adriamycin (ADR) in the presence of hypoxia, while inhibition of hypoxia‐inducible factor 1α (HIF‐1α) by CdCl2 can make AML cells re‐susceptibile to ADR even under hypoxia. Moreover, HIF‐1α is overexpressed and plays an important role in ADR‐resistance maintenance in resistant AML cells. We further found hypoxia or induction of HIF‐1α can significantly upregulate yes‐associated protein (YAP) expression in AML cells, and resistant cells express a high level of YAP. Finally, we found that YAP may not only enhance HIF‐1α stability but also promote HIF‐1α's activity on the target gene pyruvate kinase M2. In conclusion, our data indicate that HIF‐1α or YAP may represent a therapeutic target for overcoming resistance toward adriamycin‐based chemotherapy in AML.  相似文献   
55.
ObjectiveThe objective was to investigate the anti-inflammatory effects of salidroside through the PI3K/Akt signaling pathway and its protective effects on acute hypoxia-induced myocardial injury in rats.MethodsA total of 24 healthy Sprague-Dawley male rats were selected as the experimental subjects. All rats were divided into 4 groups by using the random number table method, with 6 rats in each group. The groups included the normal control group, the salidroside group, the hypobaric hypoxia group, and the hypobaric hypoxia + salidroside group. Rats in the salidroside group were fed in the original animal laboratory and were intragastrically administered with salidroside every morning at a dosage of 35 mg/kg. Rats in the normal control group were intragastrically administered with an equal dosage of saline. Rats in the hypobaric hypoxia + salidroside group were intragastrically administered with salidroside every morning at a dosage of 35 mg/kg, who were fed in the hypoxic experiment module for animals. The altitude was increased to 4000 m, and the rats were kept in the module for 24 h. Rats in the hypobaric hypoxia group were intragastrically administered with an equal dosage of saline in the same environment, and the altitude was increased to 4000 m after administration. Parameters of blood gas analysis, histopathological changes in cardiac tissues, cardiac indexes, and inflammatory factors IL-6 and TNF-α levels of rats in groups were compared.Results1. The cardiac indexes of rats in groups were compared. The differences between the hypobaric hypoxia group and the hypobaric hypoxia + salidroside group were statistically significant (P < 0.05). 2. The results of blood gas analysis of rats in groups were compared. The differences between the hypobaric hypoxia group and the hypobaric hypoxia + salidroside group were significantly different (P < 0.05). 3. In the hypobaric hypoxia group, the myocardial cells of rats were arranged disorderly and shaped differently, with cases such as edema, degeneration, necrosis, nucleus pyknosis, and massive infiltration of inflammatory cells. In the hypobaric hypoxia + salidroside group, the above-mentioned pathological changes in myocardial cells were relieved. 4. Compared with the hypobaric hypoxia group, in the hypobaric hypoxia + salidroside group, the concentrations of IL-6 and TNF-α in rats decreased apparently, and the differences were statistically significant (P < 0.05).ConclusionSalidroside had the repairing and protective effects on the hypobaric hypoxia-induced myocardial injuries in rats. The application of salidroside could reduce the inflammatory responses of rats with hypobaric hypoxia-induced myocardial injuries through PI3K/Akt signaling pathway, thereby protecting the myocardial cells.  相似文献   
56.
Research efforts have intensified to foresee the prospects for marine biomes under climate change and anthropogenic drivers over varying temporal and spatial scales. Parallel with these efforts is the utilization of terminology, such as ‘ocean acidification’ (OA) and ‘ocean deoxygenation’ (OD), that can foster rapid comprehension of complex processes driving carbon dioxide (CO2) and oxygen (O2) concentrations in the global ocean and thus, are now widely used in discussions within and beyond academia. However, common usage of the terms ‘acidification’ and ‘deoxygenation’ alone are subjective and, without adequate contextualization, have the potential to mislead inferences over drivers that may ultimately shape the future state of marine ecosystems. Here we clarify the usage of the terms OA and OD as global, climate change‐driven processes and discuss the various attributes of elevated CO2 and reduced O2 syndromes common to coastal ecosystems. We support the use of the existing terms ‘coastal acidification’ and ‘coastal deoxygenation’ because they help differentiate the sometimes rapid and extreme nature of CO2 and O2 syndromes in coastal ecosystems from the global, climate change‐driven processes of OA and OD. Given the complexity and breadth of the processes involved in altering CO2 and O2 concentrations across marine ecosystems, we provide a workflow to enable contextualization and clarification of the usage of existing terms and highlight the close link between these two gases across spatial and temporal scales in the ocean. These distinctions are crucial to guide effective communication of research within the scientific community and guide policymakers responsible for intervening on the drivers to secure desirable future ocean states.  相似文献   
57.
58.
59.
Arteriovenous fistulas (AVFs) are the preferred vascular access for haemodialysis of patients suffering from end-stage renal disease, a worldwide public health problem. However, they are prone to a high rate of failure due to neointimal hyperplasia and stenosis. This study aimed to determine if osteopontin (OPN) was induced in hypoxia and if OPN could be responsible for driving AVF failure. Identification of new factors that participate in remodelling of AVFs is a challenge. Three cell lines representing the cells of the three layers of the walls of arteries and veins, fibroblasts, smooth muscle cells and endothelial cells, were tested in mono- and co-culture in vitro for OPN expression and secretion in normoxia compared to hypoxia after silencing the hypoxia-inducible factors (HIF-1α, HIF-2α and HIF-1/2α) with siRNA or after treatment with an inhibitor of NF-kB. None of the cells in mono-culture showed OPN induction in hypoxia, whereas cells in co-culture secreted OPN in hypoxia. The changes in oxygenation that occur during AVF maturation up-regulate secretion of OPN through cell-cell interactions between the different cell layers that form AVF, and in turn, these promote endothelial cell proliferation and could participate in neointimal hyperplasia.  相似文献   
60.
Hepatocellular carcinoma (HCC), with life‐threatening malignant behaviours, often develops distant metastases and is the fourth most common primary cancer in the world, having taken millions of lives in Asian countries such as China. The novel miR‐3677‐3p is involved in a high‐expression‐related poor prognosis in HCC tissues and cell lines, indicating oncogenesis functions in vitro and in vivo. Initially, we confirmed the inhibition of proliferation, migration and invasion in miR‐3677‐3p knock‐down MHCC‐97H and SMMC‐7721 cell lines, which are well known for their high degree of invasiveness. Then, we reversed the functional experiments in the low‐miR‐3677‐3p‐expression Hep3B cell line via overexpressing miR‐3677‐3p. In nude mice xenograft and lung metastasis assays, we found suppressor behaviours, smaller nodules and low density of organ spread, after injection of cells transfected with shRNA‐miR‐3677‐3p. A combination of databases (Starbase, TargetScan and MiRgator) illustrated miR‐3677‐3p targets, and it was shown to suppress the expression of SIRT5 in a dual‐luciferase reporter system. To clarify the conclusions of previous ambiguous research, we up‐regulated SIRT5 in Hep3B cells, and rescue tests were established for confirmation that miR‐3677‐3p suppresses SIRT5 to enhance the migration and invasion of HCC. Interestingly, we discovered hypoxia‐induced miR‐3677‐3p up‐regulation benefited HCC malignancy and invasiveness. In conclusion, the overexpression of miR‐3677‐3p mediated SIRT5 inhibition, which could increase proliferation, migration and invasion of HCC in hypoxic microenvironments.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号