首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   144篇
  免费   9篇
  国内免费   1篇
  2021年   4篇
  2019年   1篇
  2018年   4篇
  2017年   3篇
  2016年   3篇
  2015年   6篇
  2014年   4篇
  2013年   8篇
  2012年   13篇
  2011年   6篇
  2010年   6篇
  2009年   12篇
  2008年   9篇
  2007年   10篇
  2006年   9篇
  2005年   6篇
  2004年   7篇
  2003年   11篇
  2002年   9篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   4篇
  1996年   2篇
  1994年   1篇
  1991年   2篇
  1990年   2篇
  1989年   2篇
  1984年   1篇
  1978年   1篇
  1975年   1篇
排序方式: 共有154条查询结果,搜索用时 546 毫秒
51.
Hexavalent chromium (Cr(VI)) is a well-established human lung carcinogen with potentially widespread exposure. Solubility is a key factor in the carcinogenicity of Cr(VI), with the water-insoluble or 'particulate' compounds being the more potent carcinogens. Studies have indicated that the component ions are responsible for their clastogenicity, but it is uncertain whether chromium (Cr), lead (Pb) or some combination of the two is responsible for the clastogenic effects. Accordingly, we compared the clastogenicity of lead chromate (LC) with soluble sodium chromate (SC) and lead glutamate (LG) in WTHBF-6 human lung cells. We found that 1436microM was the maximal intracellular level of Pb after exposure to clastogenic concentrations of LC. However, clastogenesis was not observed after exposure to LG, even when intracellular Pb concentrations reached 13,347microM, indicating that intracellular Pb levels did not reach clastogenic levels in WTHBF-6 cells after LC treatment. By contrast, SC was clastogenic damaging 16 and 44% of metaphase cells at intracellular Cr doses of 312 and 1262microM respectively, which was comparable to the clastogenesis observed after LC treatment. LC damaged 10, 27 and 37% of metaphases at intracellular Cr doses of 288, 926 and 1644microM, respectively. These data indicate that with respect to LC-induced clastogenicity, Cr and not Pb is the proximate clastogenic species in human lung cells.  相似文献   
52.
STK15/Aurora2 is a centrosome-associated serine/threonine kinase, the protein levels and kinase activity of which rise during G2 and mitosis. STK15 overexpression induces tumorigenesis and is amplified in various human cancers and tumor cell lines. Thus, STK15 represents an important therapeutic target for small molecule inhibitors that would disrupt its activity and block cell proliferation. The availability of a robust and selective small molecule inhibitor would also provide a useful tool for identification of the potential role of STK15 in cell cycle regulation and tumor development. The authors report the development of a novel, fast, simple microplate assay for STK15 activity suitable for high-throughput screening. In the assay, gamma-(33)P-ATP and STK15 were incubated in a myelin basic protein (MBP)-coated FlashPlate(R) to generate a scintillation signal. The assay was reproducible, the signal-to-noise ratio was high (11) and the Z' factor was 0.69. The assay was easily adapted to a robotic system for drug discovery programs targeting STK15. The authors also demonstrate that STK15 is regulated by phosphorylation and the N-amino terminal domain of the protein. Treatment with phosphatase inhibitors (okadaic acid) or deletion of the N-amino terminal domain results in a significant increase in the enzymatic activity.  相似文献   
53.
A new technique for long preservation of 14C-labelled Cladocerans   总被引:1,自引:1,他引:0  
Three ways of preserving labelled Cladocerans fed with 14C-Chlorella for 7.5–10 min were tested. Tracer leakage in 4% formalin at room temperature is rapid and extensive (half of the label was found in the animals after 1 hour of preservation). Even when individuals are frozen and sorting is made quickly in a liquid, losses nevertheless occur (substantial decrease of animal activity after only 4–5 min in the water in one of the two experiments performed). Results obtained after freezing in 4% formalin and sorting exactly 2 hours after thawing gave consistent losses: 16 separate experiments with Daphnia pulex, Ceriodaphnia spp. and Diaphanosoma brachyurum gave apparent filtering rates underestimated from 35% to 63% for freezing periods of up to 45 days. The good agreement in in situ community filtering rates between measured values and estimated ones from individual data confirmed the validity of a correction factor of x 2 applied to animals frozen in formalin.  相似文献   
54.
55.
A perfusion basket reactor (BR) was developed for the continuous utilization of insolubilized laccase as cross‐linked enzyme aggregates (CLEAs). The BR consisted of an unbaffled basket made of a metallic filtration module filled with CLEAs and continuously agitated by a 3‐blade marine propeller. The agitation conditions influenced both the apparent laccase activity in the reactor and the stability of the biocatalyst. Optimal laccase activity was obtained at a rotational speed of 12.5 rps and the highest stability was reached at speeds of 1.7 rps or lower. The activity and stability of the biocatalyst were affected drastically upon the appearance of vortices in the reaction medium. This reactor was used for the continuous elimination of the endocrine disrupting chemicals (EDCs) nonylphenol (NP), bisphenol A (BPA), and triclosan (TCS). Optimization of EDC elimination by laccase CLEAs as a function of temperature and pH was achieved by response surface methodology using a central composite factorial design. The optimal conditions of pH and temperature were, respectively, 4.8 and 40.3°C for the elimination of p353NP (a branched isomer of NP), 4.7 and 48.0°C for BPA, and 4.9 and 41.2°C for TCS. Finally, the BR was used for the continuous elimination of these EDCs from a 5 mg L?1 aqueous solution using 1 mg of CLEAs at pH 5 and room temperature. Our results showed that at least 85% of these EDCs could be eliminated with a hydraulic retention time of 325 min. The performances of the BR were quite stable over a 7‐day period of continuous treatment. Furthermore, this system could eliminate the same EDCs from a 100 mg L?1 solution. Finally, a mathematical model combining the Michaelis–Menten kinetics of the laccase CLEAs and the continuous stirred tank reactor behavior of the BR was developed to predict the elimination of these xenobiotics. Biotechnol. Bioeng. 2009;102: 1582–1592. © 2008 Wiley Periodicals, Inc.  相似文献   
56.
In this study, the genes involved in the initial attack on fluorene by Sphingomonas sp. strain LB126 were investigated. The α and β subunits of a dioxygenase complex (FlnA1-FlnA2), showing 63 and 51% sequence identity, respectively, to the subunits of an angular dioxygenase from the gram-positive dibenzofuran degrader Terrabacter sp. strain DBF63, were identified. When overexpressed in Escherichia coli, FlnA1-FlnA2 was responsible for the angular oxidation of fluorene, 9-hydroxyfluorene, 9-fluorenone, dibenzofuran, and dibenzo-p-dioxin. Moreover, FlnA1-FlnA2 was able to oxidize polycyclic aromatic hydrocarbons and heteroaromatics, some of which were not oxidized by the dioxygenase from Terrabacter sp. strain DBF63. The quantification of resulting oxidation products showed that fluorene and phenanthrene were the preferred substrates of FlnA1-FlnA2.  相似文献   
57.
58.
2,4,6-Trinitrotoluene (TNT) is released in nature from manufacturing or demilitarization facilities but also after munitions firing/detonation or leakage from explosive remnants of war. Due to its toxicity and recalcitrance, life cycle of TNT-containing products and bioremediation are critical issues. As TNT is a strongly electron-deficient aromatic with a positive molecular quadrupole moment and three electrophilic nitro groups, its environmental fate is contingent upon specific sorptive electron donor–acceptor interactions and nucleophilic, reductive (bio)transformations. The microbial degradation of TNT is governed by cometabolism and therefore depends on the growth substrate(s) available in contaminated environments. Long considered an ecotoxicological safety endpoint, the immobilization of TNT metabolites derived from nitro moiety reduction in soil is controversial because they preferentially bind to the dissolved soil organic matter which can be released into surface and groundwaters. The ever-growing biochemical knowledge of TNT degradation has made bioaugmentation and phytoremediation attractive alternatives. While the discovery and engineering of microorganisms with novel/improved degradative abilities are very challenging, the deciphering of the physiological roles of promiscuous enzymes involved in TNT biodegradation, such as type II hydride transferases of the Old Yellow Enzyme family, opens new perspectives for bioremediation. Finally, transgenic plants have enabled effective phytoremediation at the field scale, which is emerging as the preferable in situ option to rehabilitate TNT-contaminated sites.  相似文献   
59.
The ability of bacterial strains to assimilate glycerol derived from biodiesel facilities to produce metabolic compounds of importance for the food, textile and chemical industry, such as 1,3‐propanediol (PD), 2,3‐butanediol (BD) and ethanol (EtOH), was assessed. The screening of 84 bacterial strains was performed using glycerol as carbon source. After initial trials, 12 strains were identified capable of consuming raw glycerol under anaerobic conditions, whereas 5 strains consumed glycerol under aerobiosis. A plethora of metabolic compounds was synthesized; in anaerobic batch‐bioreactor cultures PD in quantities up to 11.3 g/L was produced by Clostridium butyricum NRRL B‐23495, while the respective value was 10.1 g/L for a newly isolated Citrobacter freundii. Adaptation of Cl. butyricum at higher initial glycerol concentration resulted in a PDmax concentration of ~32 g/L. BD was produced by a new Enterobacter aerogenes isolate in shake‐flask experiments, under fully aerobic conditions, with a maximum concentration of ~22 g/L which was achieved at an initial glycerol quantity of 55 g/L. A new Klebsiella oxytoca isolate converted waste glycerol into mixtures of PD, BD and EtOH at various ratios. Finally, another new C. freundii isolate converted waste glycerol into EtOH in anaerobic batch‐bioreactor cultures with constant pH, achieving a final EtOH concentration of 14.5 g/L, a conversion yield of 0.45 g/g and a volumetric productivity of ~0.7 g/L/h. As a conclusion, the current study confirmed the utilization of biodiesel‐derived raw glycerol as an appropriate substrate for the production of PD, BD and EtOH by several newly isolated bacterial strains under different experimental conditions.  相似文献   
60.
Summary Tolypocladium inflatum, the producer of cyclosporins, and morphologically related fungi from the generaTolypocladium, Beauveria, Fusarium andNeocosmospora produced different levels of cyclosporin A and of extracellular lipase and chitinase. However, entomopathogenically important protease activity was not detected.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号