首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   64篇
  免费   1篇
  国内免费   1篇
  2021年   2篇
  2017年   1篇
  2013年   1篇
  2012年   3篇
  2011年   1篇
  2009年   5篇
  2008年   5篇
  2007年   6篇
  2006年   8篇
  2005年   7篇
  2004年   6篇
  2003年   4篇
  2002年   3篇
  2001年   7篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1994年   1篇
排序方式: 共有66条查询结果,搜索用时 515 毫秒
51.
S-RNase participates in at least three mechanisms of pollen rejection. It functions in S-specific pollen rejection (self-incompatibility) and in at least two distinct interspecific mechanisms of pollen rejection in Nicotiana. S-specific pollen rejection and rejection of pollen from Nicotiana plumbaginifolia also require additional stylar proteins. Transmitting-tract-specific (TTS) protein, 120 kDa glycoprotein (120K) and pistil extensin-like protein III (PELP III) are stylar glycoproteins that bind S-RNase in vitro and are also known to interact with pollen. Here we tested whether these glycoproteins have a direct role in pollen rejection. 120K shows the most polymorphism in size between Nicotiana species. Larger 120K-like proteins are often correlated with S-specific pollen rejection. Sequencing results suggest that the polymorphism primarily reflects differences in glycosylation, although indels also occur in the predicted polypeptides. Using RNA interference (RNAi), we suppressed expression of 120K to determine if it is required for S-specific pollen rejection. Transgenic SC N. plumbaginifolia x SI Nicotiana alata (S105S105 or SC10SC10) hybrids with no detectable 120K were unable to perform S-specific pollen rejection. Thus, 120K has a direct role in S-specific pollen rejection. However, suppression of 120K had no effect on rejection of N. plumbaginifolia pollen. In contrast, suppression of HT-B, a factor previously implicated in S-specific pollen rejection, disrupts rejection of N. plumbaginifolia pollen. Thus, S-specific pollen rejection and rejection of N. plumbaginifolia pollen are mechanistically distinct, because they require different non-S-RNase factors.  相似文献   
52.
Qin X  Soulard J  Laublin G  Morse D  Cappadocia M 《Planta》2005,221(4):531-537
The stylar component to gametophytic self-incompatibility in Solanaceae is an S-RNase. Its primary structure has a characteristic pattern of two hypervariable regions, involved in pollen recognition, and five constant regions. Two of the latter (C2 and C3) constitute the active site, while the highly hydrophobic C1 and C5 are believed to be involved in protein stability. We analyzed the role of the C4 region by site-directed mutagenesis. A GGGG mutant, in which the four charged residues in the C4 region were replaced with glycine, did not accumulate the protein to detectable levels in styles, suggestive of a role in protein stability. A R115G mutant, in which a charged amino acid was eliminated to reduce the potential binding affinity, had no effect on the pollen rejection phenotype. This suggests the C4 does not interact with partners such as potential pollen tube receptors facilitating S-RNase uptake. Finally, a K113R mutant replaced a potential ubiquitination target with arginine. However, this RNase acted as the wild type in both incompatible and compatible crosses. The latter crosses rule out the role of the conserved C4 lysine in ubiquitination.  相似文献   
53.
中国梨2个自交不亲和新等位基因(S等位基因)的分子鉴定   总被引:9,自引:0,他引:9  
自交不亲和是显花植物的一种重要生殖生理现象,为探明中国梨的自交不亲和特性,对‘锦香’(Pyrus bretschneideri cv. Jinxiang)和‘鹅酥’(Pyrus bretschneideri cv. Esu)2个中国梨品种进行了基因组PCR特异扩增、S基因序列分析及田间杂交授粉试验。结果确定它们各含1个新S-RNA酶基因,分别命名为S37-和S38-RNase,GenBank序列号为DQ839238和DQ839239。生物信息学分析结果表明,S37-和S38-RNA酶的推导氨基酸序列与S1-至S36-RNA酶36个梨S基因具有相同的、高度保守的C1和C2区,但其高变区与S1-至S36-RNA酶差异较大,其中与S15的差异最小,只有3个氨基酸不同。在推导的氨基酸水平上,S37与S38有96%的序列相似性,但两者与S15的相似性更高,皆为98%,与S32的相似性最低,都只有63%;S37和S38的内含子较大,分别为786bp和723bp,与S15的777bp大小接近。最后,经分析验证确定‘锦香’和‘鹅酥’的S基因型分别为S34S37和S15S38。  相似文献   
54.
Many species of Prunus display an S-RNase-based gametophytic self-incompatibility (SI), controlled by a single highly polymorphic multigene complex termed the S-locus. This comprises tightly linked stylar- and pollen-expressed genes that determine the specificity of the SI response. We investigated SI of Prunus tenella, a wild species found in small, isolated populations on the Balkan peninsula, initially by pollination experiments and identifying stylar-expressed RNase alleles. Nine P. tenella S-RNase alleles (S(1)-S(9)) were cloned; their sequence analysis showed a very high ratio of non-synonymous to synonymous nucleotide substitutions (K(a)/K(s)) and revealed that S-RNase alleles of P. tenella, unlike those of Prunus dulcis, show positive selection in all regions except the conserved regions and that between C2 and RHV. Remarkably, S(8)-RNase, was found to be identical to S(1)-RNase from Prunus avium, a species that does not interbreed with P. tenella and, except for just one amino acid, to S(11) of P. dulcis. However, the corresponding introns and S-RNase-SFB intergenic regions showed considerable differences. Moreover, protein sequences of the pollen-expressed SFB alleles were not identical, harbouring 12 amino-acid replacements between those of P. tenella SFB(8) and P. avium SFB(1). Implications of this finding for hypotheses about the evolution of new S-specificities are discussed.  相似文献   
55.
Identification of a S-ribonuclease-binding protein in Petunia hybrida   总被引:6,自引:0,他引:6  
To investigate protein-protein interactions in gametophytic self-incompatibility, we used a yeast two-hybrid assay to identify proteins that could interact with the S-ribonuclease protein. These assays identified a pollen-expressed protein, which we have named PhSBP1, that appears to bind with a high degree of specificity to the Petunia hybrida S-ribonuclease. Although PhSBP1 activates reporter gene expression only when expressed in tandem with a S-RNAse bait protein, binding is not allele-specific. Sequence analysis demonstrated that PhSBP1 contained a C-terminal cysteine-rich region that includes a RING-HC domain. Because many RING-finger domain proteins appear to function as E3 ubiquitin ligases, our results suggest that ubiquitination and protein degradation may play a role in regulating self-incompatibility interactions. Together, these results suggest that PhSBP1 may be a candidate for the recently proposed general inhibitor (RI) of self-incompatibility ribonucleases.  相似文献   
56.
Background and Aims The integrity of actin filaments (F-actin) is essential for pollen-tube growth. In S-RNase-based self-incompatibility (SI), incompatible pollen tubes are inhibited in the style. Consequently, research efforts have focused on the alterations of pollen F-actin cytoskeleton during the SI response. However, so far, these studies were carried out in in vitro-grown pollen tubes. This study aimed to assess the timing of in vivo changes of pollen F-actin cytoskeleton taking place after compatible and incompatible pollinations in Nicotiana alata. To our knowledge, this is the first report of the in vivo F-actin alterations occurring during pollen rejection in the S-RNase-based SI system. Methods The F-actin cytoskeleton and the vacuolar endomembrane system were fluorescently labelled in compatibly and incompatibly pollinated pistils at different times after pollination. The alterations induced by the SI reaction in pollen tubes were visualized by confocal laser scanning microscopy. Key Results Early after pollination, about 70 % of both compatible and incompatible pollen tubes showed an organized pattern of F-actin cables along the main axis of the cell. While in compatible pollinations this percentage was unchanged until pollen tubes reached the ovary, pollen tubes of incompatible pollinations underwent gradual and progressive F-actin disorganization. Colocalization of the F-actin cytoskeleton and the vacuolar endomembrane system, where S-RNases are compartmentalized, revealed that by day 6 after incompatible pollination, when the pollen-tube growth was already arrested, about 80 % of pollen tubes showed disrupted F-actin but a similar percentage had intact vacuolar compartments. Conclusions The results indicate that during the SI response in Nicotiana, disruption of the F-actin cytoskeleton precedes vacuolar membrane breakdown. Thus, incompatible pollen tubes undergo a sequential disorganization process of major subcellular structures. Results also suggest that the large pool of S-RNases released from vacuoles acts late in pollen rejection, after significant subcellular changes in incompatible pollen tubes.  相似文献   
57.
以‘丰水’和‘幸水’梨花柱及花粉为试材,用激光共聚焦显微技术,研究了离体条件下G蛋白活性调节剂和花柱S-RNA酶对花粉管生长及其游离Ca~(2 )浓度的影响。结果表明:G蛋白激活剂CTX可促进花粉管生长,且可解除花柱S-RNA酶对自身花粉管生长的抑制作用;G蛋白抑制荆PTX和花柱S-RNA酶共同处理使异体的花粉管生长受到抑制。CTX处理使花粉管尖端区的[Ca~(2 )]_i明显升高,花柱S-RNA酶处理引起自身花粉管尖端区的[Ca~(2 )]_i梯度消失;CTX和花柱S-RNA酶共同处理则使自身花粉管内的[Ca~(2 )J_i表现出两者单独处理时的综合特征;而花柱S-RNA酶和PTX共同处理后,异体的花粉管内[Ca~(2 )]_i表现出先升高后下降的趋势。  相似文献   
58.
Unilateral incompatibility often occurs between self-incompatible (SI) species and their self-compatible (SC) relatives. For example, SI Nicotiana alata rejects pollen from SC N. plumbaginifolia, but the reciprocal pollination is compatible. This interspecific pollen rejection system closely resembles intraspecific S-allele-specific pollen rejection. However, the two systems differ in degree of specificity. In SI, rejection is S-allele-specific, meaning that only a single S-RNase causes rejection of pollen with a specific S genotype. Rejection of N. plumbaginifolia pollen is less specific, occurring in response to almost any S-RNase. Here, we have tested whether a non-S-RNase can cause rejection of N. plumbaginifolia pollen. The Escherichia coli rna gene encoding RNaseI was engineered for expression in transgenic (N. plumbaginifolia × SC N. alata) hybrids. Expression levels and pollination behavior of hybrids expressing E. coli RNaseI were compared to controls expressing SA2-RNase from N. alata. Immunoblot analysis and RNase activity assays showed that RNaseI and SA2-RNase were expressed at comparable levels. However, expression of SA2-RNase caused rejection of N. plumbaginifolia pollen, whereas expression of RNaseI did not. Thus, in this system, RNase activity alone is not sufficient for rejection of N. plumbaginifolia pollen. The results suggest that S-RNases may be specially adapted to function in pollen rejection.  相似文献   
59.
确定梨自交不亲和基因型研究的技术进展   总被引:1,自引:0,他引:1  
综述了运用杂交授粉试验和分子生物学方法等技术确定梨品种自交不亲和基因型研究的技术进展,分析了这些技术在确定梨品种自交不亲和基因型方面的优点和不足之处,并初步探讨了研究前景。因为HV区氨基酸的不同,不同S基因型也有所差异。因此,除了在分子生物学的水平上进行研究外,其他方法如mRNA、蛋白质和杂交授粉等水平上的研究在确定S基因型上也同样重要。  相似文献   
60.
A survey of Solanum chacoense plants expressing an authenticS11-RNase transgene identified a line with partial compatibilityto S11 pollen. By comparing fruit set to the S-RNase levelsdetermined immunologically in single styles, the minimum levelof S11-RNase required for full rejection of S11 pollen was estimatedto be 18 ng per style. The S11-RNase threshold levels are thusconsiderably lower than those previously reported for the S12-RNase.Interestingly, these two allelic S-RNases differ dramaticallyin the extent of glycosylation, with the number of glycosylationsites varying from one (S11-RNase) to four (S12-RNase). It issuggested that reduced glycosylation of the S11-RNase may berelated to the lower threshold for pollen rejection. Key words: Gametophytic self-incompatibility, glycosylation, pistil-by-pistil analysis, S-RNase, Solanum chacoense, threshold Received 13 August 2007; Revised 27 November 2007 Accepted 30 November 2007  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号