首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   440篇
  免费   74篇
  2023年   4篇
  2022年   3篇
  2021年   7篇
  2020年   6篇
  2019年   15篇
  2018年   14篇
  2017年   8篇
  2016年   9篇
  2015年   21篇
  2014年   28篇
  2013年   28篇
  2012年   28篇
  2011年   27篇
  2010年   13篇
  2009年   9篇
  2008年   15篇
  2007年   15篇
  2006年   16篇
  2005年   18篇
  2004年   16篇
  2003年   19篇
  2002年   14篇
  2001年   16篇
  2000年   13篇
  1999年   8篇
  1994年   3篇
  1993年   2篇
  1992年   6篇
  1991年   4篇
  1990年   4篇
  1989年   8篇
  1988年   6篇
  1987年   7篇
  1986年   12篇
  1985年   7篇
  1984年   4篇
  1983年   5篇
  1982年   4篇
  1981年   4篇
  1980年   2篇
  1979年   10篇
  1976年   2篇
  1975年   4篇
  1973年   3篇
  1972年   7篇
  1971年   3篇
  1970年   3篇
  1969年   4篇
  1967年   4篇
  1965年   2篇
排序方式: 共有514条查询结果,搜索用时 15 毫秒
51.
BACKGROUND: Intraflagellar transport (IFT) is a motility process operating between the ciliary/flagellar (interchangeable terms) membrane and the microtubular axoneme of motile and sensory cilia. Multipolypeptide IFT particles, composed of complexes A and B, carry flagellar precursors to their assembly site at the flagellar tip (anterograde) powered by kinesin, and turnover products from the tip back to the cytoplasm (retrograde) driven by cytoplasmic dynein. IFT is essential for the assembly and maintenance of almost all eukaryotic cilia and flagella, and mutations affecting either the IFT motors or the IFT particle polypeptides result in the inability to assemble normal flagella or in defects in the sensory functions of cilia. RESULTS: We found that the IFT complex B polypeptide, IFT27, is a Rab-like small G protein. Reduction of the level of IFT27 by RNA interference reduces the levels of other complex A and B proteins, suggesting that this protein is instrumental in maintaining the stability of both IFT complexes. Furthermore, in addition to its role in flagellar assembly, IFT27 is unique among IFT polypeptides in that its partial knockdown results in defects in cytokinesis and elongation of the cell cycle and a more complete knockdown is lethal. CONCLUSION: IFT27, a small G protein, is one of a growing number of flagellar proteins that are now known to have a role in cell-cycle control.  相似文献   
52.
Several lines of data recently pointed out a role of the serine proteinase thrombin in liver fibrogenesis, but its mechanism of action is unknown. The aim of this study was to evaluate the effect of thrombin on the migration of human liver myofibroblasts. We show here that thrombin inhibits both basal migration and platelet-derived growth factor (PDGF)-BB-induced migration of myofibroblasts. By using a thrombin antagonist, a protease-activated receptor (PAR)-1 mimetic peptide, and a PAR-1 antibody, we show that this effect is dependent on the catalytic activity of thrombin and on PAR-1 activation. Thrombin's effect on basal migration was dependent on cyclooxygenase 2 (COX-2) activation because it was blocked by the COX-2 inhibitors NS-398 and nimesulide, and pharmacological studies showed that it was relayed through prostaglandin E(2) and its EP(2) receptor. On the other hand, thrombin-induced inhibition of PDGF-BB-induced migration was not dependent on COX-2. We show that thrombin inhibits PDGF-induced Akt-1 phosphorylation. This effect was consecutive to inhibition of PDGF-beta receptor activation through active dephosphorylation. Thus thrombin, through two distinct mechanisms, inhibits both basal- and PDGF-BB-induced migration of human hepatic liver myofibroblasts. The fine tuning of myofibroblast migration may be one of the mechanisms used by thrombin to regulate liver fibrogenesis.  相似文献   
53.
Most eukaryotic proteins destined for imminent destruction are first tagged with a chain of ubiquitin molecules and are subsequently dismantled by the proteasome. Ubiquitin-independent degradation of substrates by the proteasome, however, also occurs. The number of documented proteasome-dependent, ubiquitin-independent degradation events remains relatively small but continues to grow. Proteins involved in oncogenesis and tumor suppression make up the majority of the known cases for this type of protein destruction. Provocatively, viruses with confirmed or suspected oncogenic properties are also prominent participants in the pantheon of ubiquitin-independent proteasomal degradation events. In this review, we identify and describe examples of proteasome-dependent, ubiquitin-independent protein degradation that occur during tumor virus infections, speculate why this type of protein destruction may be preferred during oncogenesis, and argue that this uncommon type of protein turnover represents a prime target for antiviral and anticancer therapeutics.  相似文献   
54.
Incidental entanglement in fishing gear is arguably the most serious threat to many populations of small cetaceans, judging by the alarming number of captured animals. However, other aspects of this threat, such as the potential capture of mother-offspring pairs or reproductive pairs, could be equally or even more significant but have rarely been evaluated. Using a combination of demographic and genetic data we provide evidence that i) Franciscana dolphin pairs that are potentially reproductive and mother-offspring pairs form temporal bonds, and ii) are entangled simultaneously. Our results highlight potential demographic and genetic impacts of by-catch to cetacean populations: the joint entanglement of mother-offspring or reproductive pairs, compared to random individuals, might exacerbate the demographic consequences of by-catch, and the loss of groups of relatives means that significant components of genetic diversity could be lost together. Given the social nature of many odontocetes (toothed cetaceans), we suggest that these potential impacts could be rather general to the group and therefore by-catch could be more detrimental than previously considered.  相似文献   
55.
The Kv2.1 channel generates a delayed-rectifier current in neurons and is responsible for modulation of neuronal spike frequency and membrane repolarization in pancreatic β-cells and cardiomyocytes. As with other tetrameric voltage-activated K(+)-channels, it has been proposed that each of the four Kv2.1 voltage-sensing domains activates independently upon depolarization, leading to a final concerted transition that causes channel opening. The mechanism by which voltage-sensor activation is coupled to the gating of the pore is still not understood. Here we show that the carbon-monoxide releasing molecule 2 (CORM-2) is an allosteric inhibitor of the Kv2.1 channel and that its inhibitory properties derive from the CORM-2 ability to largely reduce the voltage dependence of the opening transition, uncoupling voltage-sensor activation from the concerted opening transition. We additionally demonstrate that CORM-2 modulates Shaker K(+)-channels in a similar manner. Our data suggest that the mechanism of inhibition by CORM-2 may be common to voltage-activated channels and that this compound should be a useful tool for understanding the mechanisms of electromechanical coupling.  相似文献   
56.
Discordant action potential alternans creates large gradients of refractoriness, which are thought to be the mechanisms linking T-wave alternans to cardiac arrhythmogenesis. Since intercellular coupling acts to maintain synchronization of repolarization between cells, we hypothesized that intercellular uncoupling, such as during ischemia, would initiate discordant alternans and that restoration of intercellular coupling by the gap junction opener rotigaptide may provide a novel approach for suppressing arrhythmogenic discordant alternans. Optical mapping was used to record action potentials from ventricular epicardium of Langendorff-perfused guinea pig hearts. Threshold for spatially synchronized (i.e., concordant) alternans and discordant alternans was determined by increasing heart rate step-wise during 1) baseline, 2) treatment with rotigaptide or vehicle, and 3) global low-flow ischemia + rotigaptide or vehicle. Ischemia reduced the threshold for concordant alternans in both groups from 362 +/- 8 to 305 +/- 9 beats/min (P < 0.01) and for discordant alternans from 423 +/- 6 to 381 +/- 7 beats/min (P < 0.01). Interestingly, rotigaptide also increased the threshold for discordant alternans relative to vehicle both before (438 +/- 7 vs. 407 +/- 8 beats/min, P < 0.05) and during (394 +/- 7 vs. 364 +/- 9 beats/min, P < 0.05) ischemia. Rotigaptide increased conduction velocity and prevented conduction slowing and dispersion of repolarization during ischemia. Confocal immunofluorescence revealed that total connexin43 quantity and cellular distribution were unchanged before or after low-flow ischemia, with and without rotigaptide. However, connexin43 dephosphorylation in response to low-flow ischemia was significantly prevented by rotigaptide (15.9 +/- 7.0 vs. 0.3 +/- 6.4%, P < 0.001). These data suggest that intercellular uncoupling plays an important role in the transition from concordant to discordant alternans. By suppressing discordant alternans, repolarization gradients, and connexinx43 dephosphorylation, rotigaptide may protect against ischemia-induced arrhythmias. Drugs that selectively open gap junctions offer a novel strategy for antiarrhythmic therapy.  相似文献   
57.
Despite the remarkable species richness of the Mediterranean flora and its well-known geological history, few studies have investigated its temporal and spatial origins. Most importantly, the relative contribution of geological processes and long-distance dispersal to the composition of contemporary Mediterranean biotas remains largely unknown. We used phylogenetic analyses of sequences from six chloroplast DNA markers, Bayesian dating methods, and ancestral area reconstructions, in combination with paleogeographic, paleoclimatic, and ecological evidence, to elucidate the time frame and biogeographic events associated with the diversification of Araceae in the Mediterranean Basin. We focused on the origin of four species, Ambrosina bassii, Biarum dispar, Helicodiceros muscivorus, Arum pictum, subendemic or endemic to Corsica, Sardinia, and the Balearic Archipelago. The results support two main invasions of the Mediterranean Basin by the Araceae, one from an area connecting North America and Eurasia in the Late Cretaceous and one from the Anatolian microplate in western Asia during the Late Eocene, thus confirming the proposed heterogeneous origins of the Mediterranean flora. The subendemic Ambrosina bassii and Biarum dispar likely diverged sympatrically from their widespread Mediterranean sister clades in the Early-Middle Eocene and Early-Middle Miocene, respectively. Combined evidence corroborates a relictual origin for the endemic Helicodiceros muscivorus and Arum pictum, the former apparently representing the first documented case of vicariance driven by the initial splitting of the Hercynian belt in the Early Oligocene. A recurrent theme emerging from our analyses is that land connections and interruptions, caused by repeated cycles of marine transgressions-regressions between the Tethys and Paratethys, favored geodispersalist expansion of biotic ranges from western Asia into the western Mediterranean Basin and subsequent allopatric speciation at different points in time from the Late Eocene to the Late Oligocene.  相似文献   
58.
GPR30 contributes to estrogen-induced thymic atrophy   总被引:1,自引:0,他引:1  
The mechanisms by which prolonged estrogen exposures, such as estrogen therapy and pregnancy, reduce thymus weight, cellularity, and CD4 and CD8 phenotype expression, have not been well defined. In this study, the roles played by the membrane estrogen receptor, G protein-coupled receptor 30 (GPR30), and the intracellular estrogen receptors, estrogen receptor alpha (ERalpha) and beta (ERbeta), in 17beta-estradiol (E2)-induced thymic atrophy were distinguished by construction and the side-by-side comparison of GPR30-deficient mice with ERalpha and ERbeta gene-deficient mice. Our study shows that whereas ERalpha mediated exclusively the early developmental blockage of thymocytes, GPR30 was indispensable for thymocyte apoptosis that preferentially occurs in T cell receptor beta chain(-/low) double-positive thymocytes. Additionally, G1, a specific GPR30 agonist, induces thymic atrophy and thymocyte apoptosis, but not developmental blockage. Finally, E2 treatment attenuates the activation of nuclear factor-kappa B in CD25(-)CD4(-)CD8(-) double-negative thymocytes through an ERalpha-dependent yet ERbeta- and GPR30-independent pathway. Differential inhibition of nuclear factor-kappaB by ERalpha and GPR30 might underlie their disparate physiological effects on thymocytes. Our study distinguishes, for the first time, the respective contributions of nuclear and membrane E2 receptors in negative regulation of thymic development.  相似文献   
59.
Amphibians may be critically challenged by aquatic contaminants during their embryonic development. Many classes of compounds, including organophosphorus pesticides, are able to cause oxidative stress that affects the delicate cellular redox balance regulating tissue modeling. We determined the progression of antioxidant defenses during the embryonic development of the South American common toad, Bufo arenarum. Superoxide dismutase (SOD) and catalase (CAT) activities were high in the unfertilized eggs, and remained constant during the first stages of development. SOD showed a significant increase when the gills were completely active and opercular folds began to form. Reductase (GR) activity was low in the oocytes and increased significantly when gills and mouth were entirely developed and the embryos presented a higher exposure to pro-oxidant conditions suggesting an environmental control. Reduced glutathione (GSH) content was also initially low, and rose continuously pointing out an increasing participation of GSH-related enzymes in the control of oxidative stress. GSH peroxidases and GSH-S-transferases showed relatively high and constant activities, probably related to lipid peroxide control. B. arenarum embryos have plenty of yolk platelets containing lipids, which provide the energy and are actively transferred to the newly synthesized membranes during the early embryonic development. Exposure to the pro-oxidant pesticide malathion during 48 h did not significantly affect the activity of antioxidant enzymes in early embryos, but decreased the activities of CAT, GR, and the pool of GSH in larvae. Previous work indicated that lipid peroxide levels were kept low in malathion-exposed larvae, thus we conclude that oxidative stress is overcome by the antioxidant defenses. The increase in the antioxidant metabolism observed in the posthatching phase of development of B. arenarum embryo, thus constitutes a defense against natural and human-generated pro-oxidants present in the aquatic environment.  相似文献   
60.
TRP channels have emerged as key biological sensors in vision, taste, olfaction, hearing, and touch. Despite their importance, virtually nothing is known about the folding and transport of TRP channels during biosynthesis. Here, we identify XPORT (exit protein of rhodopsin and TRP) as a critical chaperone for TRP and its G protein-coupled receptor (GPCR), rhodopsin (Rh1). XPORT is a resident ER and secretory pathway protein that interacts with TRP and Rh1, as well as with Hsp27 and Hsp90. XPORT promotes the targeting of TRP to the membrane in Drosophila S2 cells, a finding that provides a critical first step toward solving a longstanding problem in?the successful heterologous expression of TRP. Mutations in xport result in defective transport of TRP and Rh1, leading to retinal degeneration. Our results identify XPORT as a molecular chaperone and provide a mechanistic link between TRP channels and their GPCRs during biosynthesis and transport.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号