首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1506篇
  免费   140篇
  国内免费   22篇
  2024年   1篇
  2023年   14篇
  2022年   26篇
  2021年   59篇
  2020年   44篇
  2019年   51篇
  2018年   56篇
  2017年   33篇
  2016年   36篇
  2015年   48篇
  2014年   172篇
  2013年   108篇
  2012年   85篇
  2011年   124篇
  2010年   73篇
  2009年   93篇
  2008年   87篇
  2007年   103篇
  2006年   97篇
  2005年   74篇
  2004年   58篇
  2003年   54篇
  2002年   31篇
  2001年   14篇
  2000年   18篇
  1999年   12篇
  1998年   10篇
  1997年   5篇
  1996年   11篇
  1995年   16篇
  1994年   6篇
  1993年   5篇
  1992年   11篇
  1991年   4篇
  1990年   6篇
  1989年   2篇
  1988年   4篇
  1987年   5篇
  1986年   1篇
  1984年   1篇
  1983年   1篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
  1973年   1篇
  1971年   1篇
  1969年   1篇
排序方式: 共有1668条查询结果,搜索用时 39 毫秒
51.
We have recently shown that 3-deazaadenosine (c3Ado) inhibits atherogenesis in mice. We studied whether its anti-inflammatory capacity would also affect neointima-formation after balloon injury. Sprague Dawley rats underwent balloon angioplasty. C3Ado was administered orally, starting 5 days prior to the balloon injury and continued for 2 weeks. Fourteen days after balloon injury the intima/media ratio in the c3Ado-treated group was reduced by 67% (p < 0.001) and luminal stenosis by 50% (p < 0.001). Neointimal cellular density was decreased by 25% (p < 0.001) and the induction of c-Jun and ki67 was markedly lower. The reduction of the intima/media ratio was still observed 3 months after balloon injury. Furthermore, a c3Ado-dependent inhibition of PDGF-mediated ERK-activation and proliferation could be demonstrated.Short-term administration of C3Ado inhibits neointima-formation in rats for at least 3 months after injury. The present findings implicate that c3Ado may be useful as an inhibitor of restenosis-formation after balloon angioplasty in humans.  相似文献   
52.
Evolving evidence supports that cyclooxygenase-1 (COX-1) takes part in colon carcinogenesis. The effects of COX-1 inhibition on colon cancer cells, however, remains obscured. In this study, we demonstrate that COX-1 inhibitor sc-560 inhibited colon cancer cell proliferation with concomitant G0/G1-phase cell cycle arrest. The anti-proliferative effect was associated with down-regulation of c-Fos, cyclin E2 and E2F-1 and up-regulation of p21Waf1/Cip1 and p27Kip1. In addition, sc-560 induced macroautophagy, an emerging mechanism of tumor suppression, as evidenced by the formation of LC3+ autophagic vacuoles, enhanced LC3 processing, and the accumulation of acidic vesicular organelles and autolysosomes. In this connection, 3-methyladenine, a Class III phosphoinositide 3-kinase inhibitor, significantly abolished the formation of LC3+ autophagic vacuoles and the processing of LC3 induced by sc-560. To conclude, this study reveals the unreported relationship between COX-1 and proliferation/macroautophagy of colon cancer cells.  相似文献   
53.
Midkine (MK), a heparin-binding growth factor, has been reported to be overexpressed in a variety of human solid tumors. In the previous study, we found that MK was overexpressed in bone marrow samples derived from acute leukemia (AL) patients. To elucidate the role of MK, we stably transfected MK in IL-3-dependent BA/F3 cells. The results indicated that the capacity of proliferation and colony formation was significantly increased in the MK-transfected subclones than in the empty vector-transfected subclones. MK potentiated proliferation of BA/F3 cells by promoting cell cycle progression. Apoptosis assays showed a remarkable reduction of apoptosis in MK expressing subclones. Exogenous MK could induce the phosphorylation of Raf-1, and inhibit the expression of Bax in BA/F3 cells. These results indicate that MK might be involved in the pathogenesis of leukemia and could be taken as an ideal diagnostic marker and molecular target for the treatment of acute leukemia.  相似文献   
54.
The proliferative capacity of cancer cells is regulated by factors intrinsic to cancer cells and by secreted factors in the microenvironment. Here, we investigated the proto-oncogenic potential of the chemokine receptor, CCR5, in MCF-7 breast cancer cell lines. At physiological levels, CCL5, a ligand for CCR5, enhanced MCF-7.CCR5 proliferation. Treatment with the mTOR inhibitor, rapamycin, inhibited this CCL5-inducible proliferation. Because mTOR directly modulates mRNA translation, we investigated whether CCL5 activation of CCR5 leads to increased translation. CCL5 induced the formation of the eIF4F translation initiation complex through an mTOR-dependent process. Indeed, CCL5 initiated mRNA translation, shown by an increase in high-molecular-weight polysomes. Specifically, we show that CCL5 mediated a rapid up-regulation of protein expression for cyclin D1, c-Myc and Dad-1, without affecting their mRNA levels. Taken together, we describe a mechanism by which CCL5 influences translation of rapamycin-sensitive mRNAs, thereby providing CCR5-positive breast cancer cells with a proliferative advantage.  相似文献   
55.
Protein homeostasis relies on a balance between protein synthesis and protein degradation. The ubiquitin-proteasome system is a major catabolic pathway for protein degradation. In this respect, proteasome inhibition has been used therapeutically for the treatment of cancer. Whether inhibition of protein degradation by proteasome inhibitor can repress protein translation via a negative feedback mechanism, however, is unknown. In this study, proteasome inhibitor MG-132 lowered the proliferation of colon cancer cells HT-29 and SW1116. In this connection, MG-132 reduced the phosphorylation of mammalian target of rapamycin (mTOR) at Ser2448 and Ser2481 and the phosphorylation of its downstream targets 4E-BP1 and p70/p85 S6 kinases. Further analysis revealed that MG-132 inhibited protein translation as evidenced by the reductions of 35S-methionine incorporation and polysomes/80S ratio. Knockdown of raptor, a structural component of mTOR complex 1, mimicked the anti-proliferative effect of MG-132. To conclude, we demonstrate that the inhibition of protein degradation by proteasome inhibitor represses mTOR signaling and protein translation in colon cancer cells.  相似文献   
56.
Bone marrow stromal cells (MSCs) differentiation and proliferation are controlled by numerous growth factors and hormones. Continuous parathyroid hormone (PTH) treatment has been shown to decrease osteoblast differentiation, whereas pulsatile PTH increases osteoblast differentiation. However, the effects of PTH treatments on MSCs have not been investigated. This study showed continuous PTH treatment in the presence of dexamethasone (DEX) promoted osteogenic differentiation of rat MSCs in vitro, as demonstrated by increased alkaline phosphatase (ALP) activity, number of ALP expressing cells, and up-regulation of PTH receptor-1, ALP, and osteocalcin mRNA expressions. In contrast, pulsatile PTH treatment was found to suppress osteogenesis of rat MSCs, possibly by promoting the maintenance of undifferentiated cells. Additionally, the observed effects of PTH were strongly dependent on the presence of DEX. MSC proliferation however was not influenced by PTH independent of treatment regimen and presence or absence of DEX. Furthermore, our work raised the possibility that PTH treatment may modulate stem/progenitor cell activity within MSC cultures.  相似文献   
57.
MicroRNAs are involved in cancer-related processes. The microRNA-21(miR-21) has been identified as the only miRNA over-expressed in a wide variety of cancers, including cervical cancer. However, the function of miR-21 is unknown in cervical carcinomas. In this study, we found that the inhibition of miR-21 in HeLa cervical cancer cells caused profound suppression of cell proliferation, and up-regulated the expression of the tumor suppressor gene PDCD4. We also provide direct evidence that PDCD4-3′UTR is a functional target of miR-21 and that the 18 bp putative target site can function as the sole regulatory element in HeLa cells. These results suggest that miR-21 may play an oncogenic role in the cellular processes of cervical cancer and may serve as a target for effective therapies.  相似文献   
58.
Panaxydol, a polyacetylene compound isolated from Panax ginseng, exerts anti-proliferative effects against malignant cells. No previous study, however, has been reported on its effects on hepatocellular carcinoma cells. Here, we investigated the effects of panaxydol on the proliferation and differentiation of human hepatocarcinoma cell line HepG2. We studied by electronic microscopy of morphological and ultrastructural changes induced by panaxydol. We also examined the cytotoxicities of panaxydol against HepG2 cells using the 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl tetrazolium bromide assay and the effect of panaxydol on cell cycle distributions by flow cytometry. We investigated the production of liver proteins in panaxydol-treated cells including alpha-fetoprotein and albumin and measured the specific activity of alkaline phosphatase and gamma-glutamyl transferase. We further investigated the effects of panaxydol on the expression of Id-1, Id-2, p21 and pRb by RT-PCR or immunoblotting analysis. We found that panaxydol inhibited the proliferation of HepG2 cells and caused morphological and ultrastructural changes in HepG2 cells resembling more mature forms of hepatocytes. Moreover, panaxydol induced a cell cycle arrest at the G1 to S transition in HepG2 cells. It also significantly decreased the secretion of alpha-fetoprotein and the activity of gamma-glutamyl transferase. By contrast, panaxydol remarkably increased the secretion of albumin and the alkaline phosphatase activity. Furthermore, panaxydol increased the mRNA content of p21 while reducing that of Id-1 and Id-2. Panaxydol also increased the protein levels of p21, pRb and the hypophosphorylated pRb in a dose-dependent manner. These findings suggest that panaxydol is of value for further exploration as a potential anti-cancer agent.  相似文献   
59.
60.
The intrinsic neurons of mushroom bodies (MBs), centers of olfactory learning in the Drosophila brain, are generated by a specific set of neuroblasts (Nbs) that are born in the embryonic stage and exhibit uninterrupted proliferation till the end of the pupal stage. Whereas MB provides a unique model to study proliferation of neural progenitors, the underlying mechanism that controls persistent activity of MB-Nbs is poorly understood. Here we show that Tailless (TLL), a conserved orphan nuclear receptor, is required for optimum proliferation activity and prolonged maintenance of MB-Nbs and ganglion mother cells (GMCs). Mutations of tll progressively impair cell cycle in MB-Nbs and cause premature loss of MB-Nbs in the early pupal stage. TLL is also expressed in MB-GMCs to prevent apoptosis and promote cell cycling. In addition, we show that ectopic expression of tll leads to brain tumors, in which Prospero, a key regulator of progenitor proliferation and differentiation, is suppressed whereas localization of molecular components involved in asymmetric Nb division is unaffected. These results as a whole uncover a distinct regulatory mechanism of self-renewal and differentiation of the MB progenitors that is different from the mechanisms found in other progenitors.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号