首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   219篇
  免费   9篇
  国内免费   7篇
  2023年   12篇
  2022年   21篇
  2021年   6篇
  2020年   3篇
  2019年   12篇
  2018年   10篇
  2017年   3篇
  2016年   3篇
  2015年   9篇
  2014年   35篇
  2013年   23篇
  2012年   18篇
  2011年   11篇
  2010年   9篇
  2009年   6篇
  2008年   13篇
  2007年   13篇
  2006年   8篇
  2005年   6篇
  2004年   8篇
  2003年   1篇
  2002年   3篇
  2001年   1篇
  2000年   1篇
排序方式: 共有235条查询结果,搜索用时 15 毫秒
51.
52.
53.
GESTs (gene expression similarity and taxonomy similarity), a gene functional prediction approach previously proposed by us, is based on gene expression similarity and concept similarity of functional classes defined in Gene Ontology (GO). In this paper, we extend this method to protein-protein interac-tion data by introducing several methods to filter the neighbors in protein interaction networks for a protein of unknown function(s). Unlike other conventional methods, the proposed approach automati-cally selects the most appropriate functional classes as specific as possible during the learning proc-ess, and calls on genes annotated to nearby classes to support the predictions to some small-sized specific classes in GO. Based on the yeast protein-protein interaction information from MIPS and a dataset of gene expression profiles, we assess the performances of our approach for predicting protein functions to “biology process” by three measures particularly designed for functional classes organ-ized in GO. Results show that our method is powerful for widely predicting gene functions with very specific functional terms. Based on the GO database published in December 2004, we predict some proteins whose functions were unknown at that time, and some of the predictions have been confirmed by the new SGD annotation data published in April, 2006.  相似文献   
54.
The nucleus guides life processes of cells. Many of the nuclear proteins participating in the life processes tend to concentrate on subnuclear compartments. The subnuclear localization of nuclear proteins is hence important for deeply understanding the construction and functions of the nucleus. Recently, Gene Ontology (GO) annotation has been used for prediction of subnuclear localization. However, the effective use of GO terms in solving sequence-based prediction problems remains challenging, especially when query protein sequences have no accession number or annotated GO term. This study obtains homologies of query proteins with known accession numbers using BLAST to retrieve GO terms for sequence-based subnuclear localization prediction. A prediction method PGAC, which involves mining informative GO terms associated with amino acid composition features, is proposed to design a support vector machine-based classifier. PGAC yields 55 informative GO terms with training and test accuracies of 85.7% and 76.3%, respectively, using a data set SNL_35 (561 proteins in 9 localizations) with 35% sequence identity. Upon comparison with Nuc-PLoc, which combines amphiphilic pseudo amino acid composition of a protein with its position-specific scoring matrix, PGAC using the data set SNL_80 yields a leave-one-out cross-validation accuracy of 81.1%, which is better than that of Nuc-PLoc, 67.4%. Experimental results show that the set of informative GO terms are effective features for protein subnuclear localization. The prediction server based on PGAC has been implemented at http://iclab.life.nctu.edu.tw/prolocgac.  相似文献   
55.
In the process of cell division, a great deal of proteins is assembled into three distinct organelles, namely midbody, centrosome and kinetochore. Knowing the localization of microkit (midbody, centrosome and kinetochore) proteins will facilitate drug target discovery and provide novel insights into understanding their functions. In this study, a support vector machine (SVM) model, MicekiPred, was presented to predict the localization of microkit proteins based on gene ontology (GO) information. A total accuracy of 77.51% was achieved using the jackknife cross-validation. This result shows that the model will be an effective complementary tool for future experimental study. The prediction model and dataset used in this article can be freely downloaded from http://cobi.uestc.edu.cn/people/hlin/tools/MicekiPred/.  相似文献   
56.
By design, structural genomics (SG) solves many structures that cannot be assigned function based on homology to known proteins. Alternative function annotation methods are therefore needed and this study focuses on function prediction with three-dimensional (3D) templates: small structural motifs built of just a few functionally critical residues. Although experimentally proven functional residues are scarce, we show here that Evolutionary Trace (ET) rankings of residue importance are sufficient to build 3D templates, match them, and then assign Gene Ontology (GO) functions in enzymes and non-enzymes alike. In a high-specificity mode, this Evolutionary Trace Annotation (ETA) method covered half (53%) of the 2384 annotated SG protein controls. Three-quarters (76%) of predictions were both correct and complete. The positive predictive value for all GO depths (all-depth PPV) was 84%, and it rose to 94% over GO depths 1-3 (depth 3 PPV). In a high-sensitivity mode, coverage rose significantly (84%), while accuracy fell moderately: 68% of predictions were both correct and complete, all-depth PPV was 75%, and depth 3 PPV was 86%. These data concur with prior mutational experiments showing that ET rank information identifies key functional determinants in proteins. In practice, ETA predicted functions in 42% of 3461 unannotated SG proteins. In 529 cases—including 280 non-enzymes and 21 for metal ion ligands—the expected accuracy is 84% at any GO depth and 94% down to GO depth 3, while for the remaining 931 the expected accuracies are 60% and 71%, respectively. Thus, local structural comparisons of evolutionarily important residues can help decipher protein functions to known reliability levels and without prior assumption on functional mechanisms. ETA is available at http://mammoth.bcm.tmc.edu/eta.  相似文献   
57.
Gene Ontology广泛地应用于基于基因芯片数据的差异表达功能类分析。基因芯片技术存在检测缺失与检测误差等问题。本文探讨上述这二个因素对利用基因表达谱挖掘Gene Ontology中差异表达功能类的影响。结果显示,差异表达功能类对于检测缺失与检测误差干扰等有一定的稳健性。  相似文献   
58.
59.
60.
AMP-activated protein kinase alpha 2 (AMPKα2) regulates energy metabolism, protein synthesis, and glucolipid metabolism myocardial cells. Ketone bodies produced by fatty acid β-oxidation, especially β-hydroxybutyrate, are fatty energy–supplying substances for the heart, brain, and other organs during fasting and long-term exercise. They also regulate metabolic signaling for multiple cellular functions. Lysine β-hydroxybutyrylation (Kbhb) is a β-hydroxybutyrate–mediated protein posttranslational modification. Histone Kbhb has been identified in yeast, mouse, and human cells. However, whether AMPK regulates protein Kbhb is yet unclear. Hence, the present study explored the changes in proteomics and Kbhb modification omics in the hearts of AMPKα2 knockout mice using a comprehensive quantitative proteomic analysis. Based on mass spectrometry (LC-MS/MS) analysis, the number of 1181 Kbhb modified sites in 455 proteins were quantified between AMPKα2 knockout mice and wildtype mice; 244 Kbhb sites in 142 proteins decreased or increased after AMPKα2 knockout (fold change >1.5 or <1/1.5, p < 0.05). The regulation of Kbhb sites in 26 key enzymes of fatty acid degradation and tricarboxylic acid cycle was noted in AMPKα2 knockout mouse cardiomyocytes. These findings, for the first time, identified proteomic features and Kbhb modification of cardiomyocytes after AMPKα2 knockout, suggesting that AMPKα2 regulates energy metabolism by modifying protein Kbhb.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号