首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   237篇
  免费   8篇
  2019年   6篇
  2018年   5篇
  2017年   3篇
  2016年   3篇
  2015年   3篇
  2014年   9篇
  2013年   7篇
  2012年   7篇
  2011年   8篇
  2010年   6篇
  2009年   7篇
  2008年   7篇
  2006年   10篇
  2005年   5篇
  2004年   4篇
  2003年   2篇
  2002年   5篇
  2001年   5篇
  2000年   7篇
  1999年   7篇
  1998年   3篇
  1997年   2篇
  1996年   4篇
  1995年   5篇
  1994年   4篇
  1993年   7篇
  1992年   3篇
  1991年   7篇
  1990年   6篇
  1989年   3篇
  1988年   6篇
  1986年   3篇
  1985年   4篇
  1983年   7篇
  1981年   3篇
  1980年   2篇
  1979年   4篇
  1978年   5篇
  1977年   6篇
  1976年   6篇
  1975年   6篇
  1974年   3篇
  1973年   5篇
  1972年   7篇
  1971年   5篇
  1970年   3篇
  1969年   3篇
  1967年   1篇
  1966年   1篇
  1963年   1篇
排序方式: 共有245条查询结果,搜索用时 312 毫秒
51.
The interactions between sympathetic nerve fibers and smooth muscle cells and fibroblasts from the newborn guinea pig vas deferens were studied in tissue culture with phase contrast microscopy, time-lapse microcinematography, catecholamine fluorescence histochemistry and scanning and transmission electron microscopy. The amount of sympathetic nerve fiber growth, its catecholamine fluorescence reaction and the size of the nerve cell bodies and their nuclei all increased in the presence of vas deferens tissue. Specific growth of nerve fibers to large clumps of vas deferens tissue was seen from distances of up to 2 mm. In contrast, no specific growth from a distance occurred to single cells or small groups of cells. However, random contact with a muscle cell often led to close, extensive, and long-lasting associations. Contact with fibroblasts was always transitory.The rate of sympathetic nerve fiber growth over individual muscle cells was faster than over fibroblasts, which, in turn, was faster than over the collagen-coated surface of the coverslip. Palpation of a muscle cell by a nerve fiber growth cone increased the rate of spontaneous contraction of the muscle cell, the extent of the increase being dependent on the number of nerve fibers involved. Multiple innervation of a smooth muscle cell occurred if nerve fibers reached the cell at about the same time, but not if there was a close association already established. These results are discussed in relation to possible interactions of sympathetic nerve fibers with smooth muscle cells in vivo.  相似文献   
52.
We investigated the distribution of FMRF amide-like immunoreactivity in the small intestine of the guinea pig. Immunoreactive nerve fibers were found mainly in the myenteric and submucous plexuses and in the inner circular muscle layer. The labeled processes contained variable proportions of small clear vesicles 30-40 nm in diameter and large granular vesicles 80-120 nm in diameter. The large granular vesicles showed heavy immunoreactivity. The antisera against FMRF amide crossreact with peptides belonging to the pancreatic polypeptide family; it has therefore been suggested that the FMRF amide immunoreactivity demonstrated in the small intestine is caused by a peptide that is biosynthetically related to, but not necessarily a member of, the pancreatic polypeptide family.  相似文献   
53.
A histochemical investigation of age-related changes that occur with respect to the localization of NADPH-diaphorase in the ganglionated plexus of the guinea-pig gallbladder was carried out. In all age groups examined (embryonic stages day 34 and 52, 2 to 4-day old, 6-month old and 2-year old), the mean percentage of NADPH-diaphorase-positive neurons per ganglion was obtained by taking the number of neurons that were immunoreactive to protein gene product 9.5 (a general neuronal marker) as 100%. In addition, the possible co-existence of NADPH-diaphorase and nitric oxide synthase in the ganglionated plexus of 2 to 4-day old and 6-month old guinea-pig gallbladder was investigated. NADPH-diaphorase was not present in the ganglionated plexus of the gallbladder at embryonic day 34. At embryonic day 52, all the protein gene product 9.5-immunoreactive neurons showed positive staining to NADPH-diaphorase; this dropped to a minimum at 2–4 days (26.7%), rose slightly at 6 months (33.6%), and finally returned close to the 100% value at 2 years. In the gallbladders of 2-year old guinea-pigs, some (3 out of 10) ganglia were devoid of protein gene product 9.5-immunoreactive neurons, but NADPH-diaphorase-stained granules were found within the ganglia. However, all those neurons that were immunopositive to protein gene product 9.5 also expressed NADPH-diaphorase. Moreover, NADPH-diaphorase-positive neurons in the gallbladder of 2 to 4-day-old and 6-month-old guinea-pigs were found to express nitric oxide synthase.  相似文献   
54.
Summary The accumulation of both A and MAO proximal to a ligature on toad spinal nerves has been shown to occur at a slower rate than in mammals. As in mammals, there are two components of axonal transport in amphibian nerves, with the accumulation of A reaching a peak at between 4 and 7 days (cf. 2–4 days for NA in mammals), while MAO accumulation does not reach its maximum before 9 days (cf. 7 days in mammals). No accumulation occurs after sympathectomy, providing evidence for localization of MAO within amphibian sympathetic adrenergic nerves. Distal accumulation of MAO occurs in toad sympathetic nerves; this has not been reported to occur in mammalian nerves. Distal accumulation reaches a peak at 2–4 days, which suggests either a fast retrograde flow of MAO or that induction of MAO is occurring. These results are discussed in relation to differences between mammalian and amphibian sympathetic nerves and to the events occurring following ligation of these nerves.We wish to thank Judy Lenk, Vivienne Einhorn and Barbara Peachey for their assistance with the initial MAO histochemical work. This work was supported by grants from the National Heart Foundation of Australia and the Australian Research Grants Committee.  相似文献   
55.
56.
Extracellular ATP and 5-hydroxytryptamine (5-HT) are both involved in visceral sensory pathways by interacting with P2X and 5-HT3 receptors, respectively. We have investigated the changes in P2X and 5-HT3-mediated signalling in pelvic afferent neurons in mice deficient in P2X2 and/or P2X3 subunits by whole-cell recording of L6–S2 dorsal root ganglion (DRG) neurons and by multi-unit recording of pelvic afferents of the colorectum. In wildtype DRG neurons, ATP evoked transient, sustained or mixed (biphasic) inward currents. Transient currents were absent in P2X3 −/− neurons, whereas sustained currents were absent in P2X2 −/− DRG neurons. Neither transient nor sustained currents were observed following application of ATP or α,β-methylene ATP (α,β-meATP) in P2X2/P2X3 Dbl−/− DRG neurons. 5-HT was found to induce a fast inward current in 63% of DRG neurons from wildtype mice, which was blocked by tropisetron, a 5-HT3 receptor antagonist. The percentage of DRG neurons responding to 5-HT was significantly increased in P2X 2 −/−, P2X3 −/− and P2X2/P2X3 Dbl−/− mice, and the amplitude of 5-HT response was significantly increased in P2X2/P2X3 Dbl−/− mice. The pelvic afferent response to colorectal distension was attenuated in P2X2/P2X3 Dbl−/− mice, but the response to serosal application of 5-HT was enhanced. Furthermore, tropisetron resulted in a greater reduction in pelvic afferent responses to colorectal distension in the P2X2/P2X3 Dbl−/− preparations. These data suggest that P2X receptors containing the P2X2 and/or P2X3 subunits mediate purinergic activation of colorectal afferents and that 5-HT signalling in pelvic afferent neurons is up-regulated in mice lacking P2X2 or P2X3 receptor genes. This effect is more pronounced when both subunits are absent.  相似文献   
57.
58.
59.
A monoclonal antibody was developed to the extracellular domain of the rat P2X4 receptor. The antibody was highly selective among all rat P2X receptor subunits, and recognised only the oligomeric, non-denatured form of the P2X4 receptor. Immunohistochemistry showed an extensive pattern of distribution throughout the central and peripheral nervous systems, the epithelia of ducted glands and airways, smooth muscle of bladder, gastrointestinal tract, uterus, and arteries, uterine endometrium and fat cells. The protein was identified by Western blotting in membrane extracts of these tissues, and the ectodomain antibody immunoprecipitated a protein that was recognised with a P2X4 receptor C terminus antibody. The findings indicate that the P2X4 receptor subunit has a very extensive distribution among mammalian tissues, and this suggests possible new functional roles.The work was supported by the Wellcome Trust (R.S., R.A.N.) and the British Heart Foundation (G.B.)  相似文献   
60.
The distribution and colocalization of nitric oxide synthase and nicotinamide adenine dinucleotide phosphate-diaphorase (NADPH-diaphorase) was investigated in the adrenal gland of developing, adult and aging rats with the use of immunohistochemical and histochemical techniques. Nitric oxide synthase-immunoreactive neurons within the adrenal gland were found from the 20th day of gestation onwards. During early development the neurons were found as small clusters of smaller-size cells compared to those observed in the adult gland. Their number reached that of adult level by the 4th day after birth, and in the glands from aging rats a 28.6% increase was observed. Whilst no immunofluorescence was seen in chromaffin cells during early development, some cells from glands of aging rats showed nitric oxide synthase-immunoreactivity with varying intensity. The immunoreactive neurons from postnatal rat adrenals were also positive for NADPH-diaphorase, whilst those in prenatal rats were negative or lightly stained. Nitric oxide synthase-immunoreactive nerve fibres were present in all adrenal glands examined from the 16th day of gestation onwards. A considerable degree of variation in the distribution of immunoreactive fibres both in medulla and outer region of cortex at the different age groups was observed and described. Most, but not all, nitric oxide synthase-immunoreactive nerve fibres also showed NADPH-diaphorase staining.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号