首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   852篇
  免费   59篇
  国内免费   6篇
  2024年   1篇
  2023年   18篇
  2022年   10篇
  2021年   43篇
  2020年   50篇
  2019年   69篇
  2018年   70篇
  2017年   33篇
  2016年   33篇
  2015年   52篇
  2014年   90篇
  2013年   89篇
  2012年   67篇
  2011年   110篇
  2010年   63篇
  2009年   28篇
  2008年   33篇
  2007年   24篇
  2006年   18篇
  2005年   6篇
  2004年   9篇
  2002年   1篇
排序方式: 共有917条查询结果,搜索用时 31 毫秒
51.
52.
The melanocortin system has a clear effect on the mobilisation of stored lipids in adipocytes. The aim of the current study was to investigate the role of melanocortin 5 receptor (MC5R) on α-melanocyte-stimulating hormone (α-MSH)-induced lipolysis in 3T3-L1 adipocytes. To this end, MC5R expression was decreased by small interfering RNA (siRNA), which significantly impaired the α-MSH stimulation of lipolysis, as determined by glycerol and nonesterified fatty-acid (NEFA) quantification. The functional role of α-MSH/MC5R on triglyceride (TG) hydrolysis was mediated by hormone-sensitive lipase (HSL), adipose triglyceride lipase (ATGL), perilipin 1 (PLIN1) and acetyl-CoA carboxylase (ACC). Immunofluorescence microscopy revealed that phosphorylated HSL clearly surrounded lipid droplets in α-MSH-stimulated adipocytes, whereas PLIN1 left the immediate periphery of lipids. These observations were lost when the expression of MC5R was suppressed.  相似文献   
53.
54.
《Autophagy》2013,9(4):624-625
Diabetes induces cardiomyocyte apoptosis and suppresses cardiac autophagy, indicating that the interplay between autophagy and apoptotic cell death pathways is important in the pathogenesis of diabetic cardiomyopathy. The potential mechanism, however, remains unknown. We recently reported that diabetes depresses AMP-activated protein kinase (AMPK) activity, inhibits MAPK8/JNK1-BCL2 signaling, and promotes the interaction between BECN1 and BCL2. Concomitantly, diabetes induces cardiomyocyte apoptosis and suppresses cardiac autophagy. Activation of AMPK directly phosphorylates MAPK8, which mediates BCL2 phosphorylation and subsequent BECN1-BCL2 dissociation, leading to restoration of cardiac autophagy, protection against cardiac apoptosis, and ultimately improvement in cardiac structure and function. We conclude that dissociation of BCL2 from BECN1 through activation of MAPK8-BCL2 signaling may be an important mechanism by which AMPK activation restores autophagy, protects against cardiac apoptosis, and prevents diabetic cardiomyopathy.  相似文献   
55.
56.
Before a cell enters mitosis, the Golgi apparatus undergoes extensive fragmentation. This is required for the correct partitioning of the Golgi apparatus into daughter cells, and inhibition of this process leads to cell cycle arrest in G2 phase. AMP-activated protein kinase (AMPK) plays critical roles in regulating growth and reprogramming metabolism. Recent studies have suggested that AMPK promotes mitotic progression and Golgi disassembly, and that this seems independent of the cellular energy status. However, the molecular mechanism underlying these events is not well understood. Here, we show that both treatment with compound C and depletion of AMPKα2 (but not AMPKα1) delays the G2/M transition in synchronized HeLa cells, as evidenced by flow cytometry and mitotic index analysis. Furthermore, knockdown of AMPKα2 specifically delays further fragmentation of isolated Golgi stacks. Interestingly, pAMPKαThr172 signals transiently appear in the perinuclear region of late G2/early prophase cells, partially co-localizing with the Golgi matrix protein, GM-130. These Golgi pAMPKαThr172 signals were also specifically abolished by AMPKα2 knockdown, indicating specific spatio-temporal activation of AMPKα2 at Golgi complex during late G2/early prophases. We also found that the specific CaMKKβ inhibitor, STO-609, reduces the pAMPKα Thr172 signals in the perinuclear region of G2 phase cells and delays mitotic Golgi fragmentation. Taken together, these data suggest that AMPKα2 is the major catalytic subunit of AMPKα which regulates Golgi fragmentation and G2/M transition, and that the CaMKKβ activates AMPKα2 during late G2 phase.  相似文献   
57.
Caveolin-1 is the primary structural component of endothelial caveolae that is essential for transcellular trafficking of albumin and is also a critical scaffolding protein that regulates the activity of signaling molecules in caveolae. Phosphorylation of caveolin-1 plays a fundamental role in the mechanism of oxidant-induced vascular hyper permeability. However, the regulatory mechanism of caveolin-1 phosphorylation remains unclear. Here we identify a previously unexpected role for AMPK in inhibition of caveolin-1 phosphorylation under oxidative stress. A pharmacological activator of AMPK, 5-amino-4-imidazole carboxamide riboside (AICAR), inhibited oxidative stress-induced phosphorylation of both caveolin-1 and c-Abl, which is the major kinase of caveolin-1, and endocytosis of albumin in human umbilical vein endothelial cell. These effects were abolished by treatment with two specific inhibitors of AICAR, dipyridamole, and 5-iodotubericidin. Consistently, knockdown of the catalytic AMPKα subunit by siRNA abolished the inhibitory effect of AICAR on oxidant-induced phosphorylation of both caveolin-1 and c-Abl. Pretreatment with specific c-Abl inhibitor, imatinib mesylate, and knock down of c-Abl significantly decreased the caveolin-1 phosphorylation after H2O2 exposure and abolished the inhibitory effect of AICAR on the caveolin-1 phosphorylation. Interestingly, knockdown of Prdx-1, an antioxidant enzyme associated with c-Abl, increased phosphorylation of both caveolin-1 and c-Abl and abolished the inhibitory effect of AICAR on the caveolin-1 phosphorylation. Furthermore, co-immunoprecipitation experiment showed that AICAR suppressed the oxidant-induced dissociation between c-Abl and Prdx1. Overall, our results suggest that activation of AMPK inhibits oxidative stress-induced caveolin-1 phosphorylation and endocytosis, and this effect is mediated in part by stabilizing the interaction between c-Abl and Prdx-1.  相似文献   
58.
The promyelocytic leukemia protein is a well known tumor suppressor, but its role in metabolism is largely unknown. Mice with a deletion in the gene for PML (KO mice) exhibit altered gene expression in liver, adipose tissue, and skeletal muscle, an accelerated rate of fatty acid metabolism, abnormal glucose metabolism, constitutive AMP-activating kinase (AMPK) activation, and insulin resistance in skeletal muscle. Last, an increased rate of energy expenditure protects PML KO mice from the effects of obesity induced by a Western diet. Collectively, our study uncovers a previously unappreciated role of PML in the regulation of metabolism and energy balance in mice.  相似文献   
59.
Hypothalamic controls of energy balance rely on the detection of circulating nutrients such as glucose and long-chain fatty acids (LCFA) by the mediobasal hypothalamus (MBH). LCFA metabolism in the MBH plays a key role in the control of food intake and glucose homeostasis, yet it is not known if glucose regulates LCFA oxidation and esterification in the MBH and, if so, which hypothalamic cell type(s) and intracellular signaling mechanisms are involved. The aim of this study was to determine the impact of glucose on LCFA metabolism, assess the role of AMP-activated Kinase (AMPK), and to establish if changes in LCFA metabolism and its regulation by glucose vary as a function of the kind of LCFA, cell type, and brain region. We show that glucose inhibits palmitate oxidation via AMPK in hypothalamic neuronal cell lines, primary hypothalamic astrocyte cultures, and MBH slices ex vivo but not in cortical astrocytes and slice preparations. In contrast, oleate oxidation was not affected by glucose or AMPK inhibition in MBH slices. In addition, our results show that glucose increases palmitate, but not oleate, esterification into neutral lipids in neurons and MBH slices but not in hypothalamic astrocytes. These findings reveal for the first time the metabolic fate of different LCFA in the MBH, demonstrate AMPK-dependent glucose regulation of LCFA oxidation in both astrocytes and neurons, and establish metabolic coupling of glucose and LCFA as a distinguishing feature of hypothalamic nuclei critical for the control of energy balance.  相似文献   
60.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号