首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2942篇
  免费   142篇
  国内免费   134篇
  2023年   33篇
  2022年   36篇
  2021年   51篇
  2020年   62篇
  2019年   80篇
  2018年   86篇
  2017年   67篇
  2016年   64篇
  2015年   79篇
  2014年   126篇
  2013年   327篇
  2012年   68篇
  2011年   135篇
  2010年   84篇
  2009年   122篇
  2008年   124篇
  2007年   130篇
  2006年   120篇
  2005年   110篇
  2004年   110篇
  2003年   104篇
  2002年   102篇
  2001年   73篇
  2000年   67篇
  1999年   56篇
  1998年   72篇
  1997年   62篇
  1996年   37篇
  1995年   60篇
  1994年   32篇
  1993年   53篇
  1992年   40篇
  1991年   44篇
  1990年   39篇
  1989年   45篇
  1988年   37篇
  1987年   30篇
  1986年   27篇
  1985年   33篇
  1984年   39篇
  1983年   23篇
  1982年   26篇
  1981年   18篇
  1980年   16篇
  1979年   22篇
  1978年   18篇
  1977年   8篇
  1976年   4篇
  1975年   4篇
  1973年   7篇
排序方式: 共有3218条查询结果,搜索用时 265 毫秒
41.
Chlorotetracycline inhibits the uncoupled oxidation of exogenous NADH by Jerusalem artichoke (Helianthus tuberosus L.) mitochondria extensively (over 80%) and rapidly (inhibition complete in 10 s) in the presence of added Ca2+. Half-maximal inhibition is observed at 15 μM chlorotetracycline in the presence of 2 mM Ca2+. The oxidation of succinate is only affected marginally by chlorotetracycline plus Ca2+. The inhibition of NADH oxidation and the fluorescence of CTC are well correlated. Mn2+ is the only other cation which shows an (increased) inhibition in the presence of chlorotetracycline. The inhibition by Ca2+ and chlorotetracycline disappears at acid pH, and the pH optimum in their presence is 6.4. The inhibition caused by other lipid-soluble Ca2+-chelators is not reversible or is enhanced by the addition of excess Ca2+. In contrast, inhibition caused by relatively water-soluble chelators is completely reversed by added Ca2+. It is suggested that a neutral 1:2 complex is formed between Ca2+ and chlorotetracycline which can substitute for Ca2+ bound at sites in the lipophilic phase of the inner mitochondrial membrane, which are essential for the activity of the external NADH dehydrogenase.  相似文献   
42.
C Gauvrit  R Scalla 《FEBS letters》1983,158(2):222-224
Fragments derived from human plasma fibronectin by enzymatic degradation were tested in the Boyden chamber for chemotactic activity towards various fibroblast strains. The results provide clear evidence that the chemotactic activity is restricted to a defined region of the fibronectin molecule which is the same for various fibroblast strains. The active domain is localized between the collagen binding site and the major heparin binding site, about 170 kDa apart from the N-terminal and about 70 kDa from the C-terminal ends of the two subunit peptide chains.  相似文献   
43.
Gliding motility, ultrastructure and nutrition of two newly isolated filamentous sulfate-reducing bacteria, strains 5ac10 and 4be13, were investigated. The filaments were always attached to surfaces. Growth was supported by addition of insoluble aluminium phosphate or agar as substrata for gliding movement. Electron microscopy of ultrathin sections revealed cell walls characteristic of Gramnegative bacteria; the undulated structure of the outer membrane may pertain to the translocation mechanism. Intracytoplasmic membranes were present. Acetate, higher fatty acids, succinate or fumarate served as electron donors and carbon sources. Strain 5ac10 grew also with lactate, but not with benzoate that was used only by strain 4be13. Strain 5ac10 was able to grow slowly on H2 plus CO2 or formate in the presence of sulfate without additional organic carbon source. The capacity of complete oxidation was shown by stoichiometric measurements with acetate plus sulfate. Both strains contained b- and c-type cytochromes. Desulfoviridin was detected only in strain 5ac10. The two filamentous gliding sulfate reducers are described as new species of a new genus, Desulfonema limicola and Desulfonema magnum.  相似文献   
44.
The levels of individual free and conjugated ecdysteroids and ecdysteroid acids, labeled from [14C]cholesterol, in five different age groups of male Manduca sexta during pupal-adult development were determined by HPLC. Eight free ecdysteroids, eight ecdysteroid phosphates, and two ecdysteroid acids were identified. Newly ecdysed pupae contained predominantly 3-epiecdysteroids in each of the free, conjugated, and acidic ecdysteroid fractions. The titer of each ecdysteroid fraction rose sharply by day 4, and this was particularly noteworthy with respect to free ecdysone and 3-epi-20-hydroxyecdysonoic acid. This stage demonstrated high degrees of ecdysone biosynthesis, oxidative catabolism, and phosphorylation. As development proceeded to day 16, total ecdysteroid titer remained constant; a decreasing free ecdysteroid titer was accompanieid by increasing titers of both conjugates and acids resulting from the metabolic processes of hydroxylation, oxidation, epimerization, and phosphorylation. The predominant metabolites throughout development were 3-epi-20-hydroxyecdysonoic acid and the phosphate conjugates of 3-epi-20-hydroxyecdysone and 3-epi-20,26-dihydroxyecdysone. The ultimate inactivation of the ecdysteroids of M. sexta during pupal-adult development is possibly mediated by two pairs of metabolically-linked processes, one leading to a 3-epiecdysteroid acid, and the other to 3-epiecdysteroid phosphates.  相似文献   
45.
The reaction of ribose with horseradish peroxidase in the presence of H2O2 is accompanied by light emission. The detection of horseradish peroxidase Compound II (FeO2+) indicates that the enzyme participates in a normal peroxidatic cycle. Hydrogen peroxide converts horseradish peroxidase into Compound I (FeO3+) which in turn is converted into Compound II by abstracting a hydrogen atom from ribose forming a ribosyl radical. In aerated solutions oxygen rapidly adds to the ribosyl radical. Based on the spectral characteristics and the enhancement of the chemiluminescence by chlorophyll-a, xanthene dyes, D2O and DABCO, it is suggested that the excited species, apparently triplet carbonyls and 1O2, are formed from the bimolecular decay of the peroxyl radicals via the Russell mechanism.  相似文献   
46.
Methanogenesis and microbial lipid synthesis in anoxic salt marsh sediments   总被引:1,自引:0,他引:1  
In anoxic salt marsh sediments of Sapelo Island, GA, USA, the vertical distribution of CH4 production was measured in the upper 20 cm of surface sediments in ten locations. In one section of high marsh sediments, the concentration and oxidation of acetate in sediment porewaters and the rate and amount of14C acetate and14CO2 incorporation into cellular lipids of the microbial population were investigated. CH4 production rates ranged from <1 to 493 nM CH4 gram sediment−1 day−1 from intact subcores incubated under nitrogen. Replacement with H2 stimulated the rate of methane release up to nine fold relative to N2 incubations. Rates of lipid synthesis from CO2 averaged 39.2 ×10−2nanomoles lipid carbon cm3 sediment−1 hr−1, suggesting that CO2 may be an important carbon precursor for microbial membrane synthesis in marsh sediments under anoxic conditions. Qualitative measurements of lipid synthesis rates from acetate were found to average 8.7 × 10−2 nanomoles. Phospholipids were the dominant lipids synthesized by both substrates in sediment cores, accounting for an average of 76.6% of all lipid radioactivity. Small amounts of ether lipids indicative of methanogenic bacteria were observed in cores incubated for 7 days, with similar rates of synthesis for both CO2 and acetate. The low rate of ether lipid synthesis suggests that either methanogen lipid biosynthesis is very slow or that methanogens represent a small component of total microbial lipid synthesis in anoxic sediments. present address: The University of Maryland,, Chesapeake Biological Laboratory, Box 38, Solomons, MD 20688, USA  相似文献   
47.
Summary Hydroxylamine, a potent oxidizing agent used to reverse carbethoxylation of histidine by diethylpyrocarbonate, activated Cl-dependent K flux (KCl cotransport) of low K sheep red blood cells almost sixfold. When KCl cotransport was already stimulated by N-ethylmaleimide, hydroxylamine caused an additional twofold activation suggesting modification of sites different from those thiol alkylated. This conclusion was supported by the finding that hydroxylamine additively augmented also the diamide-induced KCl flux (Lauf, P.K. 1988.J. Membrane Biol. 101:179–188) with dithiothreitol fully reversing the diamide but not the hydroxylamine effect. Stimulation of KCl cotransport by hydroxylamine was completely inhibited by treatment with diethylpyrocarbonate also known to prevent KCl cotransport stimulation by N-ethylmaleimide, both effects being independent of the order of addition. Hence, although the effect of carbethoxy modification on KCl flux cannot be reversed by hydroxylamine and thus excludes histidine as the target for diethylpyrocarbonate, our finding reveals an important chemical determinant of KCl cotransport stimulation by both hydroxylamine oxidation and thiol group alkylation.  相似文献   
48.
The interrelation of palmitate oxidation with amino acid formation in rat brain mitochondria has been investigated in purified mitochondria of nonsynaptic origin by measuring the formation of aspartate, -ketoglutarate, and glutamate during palmitate oxidation, and also by assaying14C-products of [1-14C]palmitate oxidation. Oxidation of palmitate (or [1-14C]palmitate) resulted in the formation of aspartate (or14C-aspartate), and the oxidation was inhibited by aminooxyacetate (an inhibitor of transaminase), Palmitate oxidation also resulted in -ketoglutarate formation, which was sensitive to the effect of aminooxyacetate. Addition of NH4Cl was found to increase14C-products and formation of -ketoglutarate, whereas glutamate formation was not increased unless the rate of palmitate oxidation was reduced by 50% by aminooxyacetate or -ketoglutarate was added exogenously. Exogenous -ketoglutarate was found to decrease14C-products, but not aspartate formation. These results indicated that palmitate oxidation was closely related to aspartate formation via aspartate aminotransferase. During palmitate oxidation without aminooxyacetate or added -ketoglutarate, however, -ketoglutarate was not available for glutamate formation via glutamate dehydrogenase. We discuss the possibility that this was because (a) oxidative decarboxylation of -ketoglutarate to form succinyl-CoA was favored over glutamate formation for the competition for -ketoglutarate in the same pool, and (b) the pool of -ketoglutarate produced in the aspartate aminotransferase reaction did not serve as substrate for glutamate formation.  相似文献   
49.
Take-all is a world-wide root-rotting disease of cereals. The causal organism of take-all of wheat is the soil-borne fungus Gaeumannomyces graminis var tritici (Ggt). No resistance to take-all, worthy of inclusion in a plant breeding programme, has been discovered in wheat but the severity of take-all is increased in host plants whose tissues are deficient for manganese (Mn). Take-all of wheat will be decreased by all techniques which lift Mn concentrations in shoots and roots of Mn-deficient hosts to adequate levels. Wheat seedlings were grown in a Mn-deficient calcareous sand in small pots and inoculated with four field isolates of Ggt. Infection by three virulent isolates was increased under conditions which were Mn deficient for the wheat host but infection by a weakly virulent isolate, already low, was further decreased. Only the three virulent isolates caused visible oxidation of Mn in vitro. The sensitivity of Ggt isolates to manganous ions in vitro did not explain the extent of infection they caused on wheat hosts. In a similar experiment four Australian wheat genotypes were grown in the same Mn-deficient calcareous sand and inoculated with one virulent isolate of Ggt. Two genotypes were inefficient at taking up manganese and were very susceptible to take-all, one was very efficient at taking up manganese and was resistant to take-all, and the fourth genotype was intermediate for both characters. All genotypes were equally resistant under Mn-adequate conditions.  相似文献   
50.
Most carcinogens, including polycyclic aromatic hydrocarbons (PAH), require metabolic activation to produce the ultimate electrophilic species that bind covalently with cellular macromolecules to trigger the cancer process. Metabolic activation of PAH can be understood in terms of two main pathways: one-electron oxidation to yield reactive intermediate radical cations and monooxygenation to produce bay-region diol epoxides. The reason we have postulated that one-electron oxidation plays an important role in the activation of PAH derives from certain common characteristics of the radical cation chemistry of the most potent carcinogenic PAH. Two main features common to these PAH are: 1) a relatively low ionization potential, which allows easy metabolic removal of one electron, and 2) charge localization in the PAH radical cation that renders this intermediate specifically and efficiently reactive toward nucleophiles. Equally important, cytochrome P-450 and mammalian peroxidases catalyze one-electron oxidation. This mechanism plays a role in the binding of PAH to DNA. Chemical, biochemical and biological evidence will be presented supporting the important role of one-electron oxidation in the activation of PAH leading to initiation of cancer.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号