首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   157篇
  免费   3篇
  国内免费   1篇
  2019年   1篇
  2018年   1篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   3篇
  2012年   1篇
  2011年   5篇
  2009年   4篇
  2008年   6篇
  2006年   2篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   3篇
  2001年   2篇
  2000年   2篇
  1999年   1篇
  1998年   3篇
  1997年   1篇
  1996年   3篇
  1995年   2篇
  1994年   3篇
  1993年   2篇
  1992年   3篇
  1991年   4篇
  1990年   4篇
  1989年   3篇
  1988年   3篇
  1987年   7篇
  1986年   2篇
  1985年   16篇
  1984年   16篇
  1983年   16篇
  1982年   8篇
  1981年   10篇
  1980年   4篇
  1979年   2篇
  1978年   2篇
  1977年   2篇
  1975年   1篇
  1973年   2篇
排序方式: 共有161条查询结果,搜索用时 183 毫秒
41.
The effects of 12-0-tetradecanoyl-phorbol-13-acetate (TPA), A23187, forskolin and thyrotropin-releasing hormone (TRH) on prolactin release from GH4C1 cells were compared. TPA caused a 2-fold release, maximum after 6 or more min, that was sustained for 30 min or more. A23187 caused only a small and variable response that peaked within 4 to 6 min. Combination of TPA and A23187 caused a rapid 3- to 5-fold increase in release that declined slowly. TRH increased prolactin release 3- to 5-fold, reaching a maximum within 4 min, followed by sustained release at lower rates. Forskolin had little effect by itself, but potentiated release caused either by combined TPA and A23187, or by TRH. These data are consistent with a model in which two branches of the Ca2+ messenger system participate in the action of TRH, a calmodulin branch and a C-kinase branch that interact to cause large amounts of sustained release. Forskolin, by regulating the cyclic AMP content of the cell determines the set point around which the Ca2+ messenger system operates.  相似文献   
42.
The localization of thyrotropin releasing hormone (TRH) in rat brain determined by use of avidin-biotin immunoperoxidase histochemistry was compared with the distribution and quantitation by radioimmunoassay (RIA). Male Sprague-Dawley rats received intracisternal injections of 100 micrograms of colchicine or saline and were sacrificed 24 hours later. Brains were either perfused with lysine-periodate fixative and processed for TRH immunohistochemistry or were dissected into 9 brain regions for TRH RIA. In colchicine pretreated rats. TRH immunoreactive perikarya were observed only in nuclei of the hypothalamus and brain stem. No cell body staining was observable in non-colchicine treated rats. With the exception of the olfactory bulb, brain regions exhibiting dense TRH staining contained high concentrations of TRH as measured by RIA. Colchicine pretreatment did not alter the concentration of TRH in most brain regions, however, there was a significant increase in brain stem TRH content 24 hours following colchicine administration. These findings indicate that immunohistochemical localization of TRH corresponds well with endogenous concentrations of TRH determined by RIA.  相似文献   
43.
44.
Injections of oxytocin and TRH (11 picomoles), centered on the dorsal motor nucleus of the vagus, substantially increased gastric acid secretion. Additionally, oxytocin, but not TRH, simultaneously produced a consistent reduction in heart rate. Vasopressin injected into the same locus, at doses of 11 and 110 picomoles, had no effect on either function. Both the gastric and cardiac effects of oxytocin were eliminated by the central injections of oxytocin antagonist dEt2Tyr(Et)Orn8Vasotocin (ETOV; 6 picomoles) or peripheral administration of atropine (300 μg/kg, IP). Application of oxytocin or TRH to the area postrema, at double the dosage (22 picomoles) yielded no consistent effects on either gastric secretion or heart rate. These findings indicate that oxytocin in the dorsal motor nucleus of the vagus may act as a regulator of vagally-mediated gastric and cardiovascular functions while TRH effects, in this medullary area, seem limited to the regulation of gastric function.  相似文献   
45.
We discovered the orally active thyrotropin‐releasing hormone (TRH) mimetic: (4S,5S)‐5‐methyl‐N‐{(2S)‐1‐[(2R)‐2‐methylpyrrolidin‐1‐yl]‐1‐oxo‐3‐(1,3‐thiazol‐4‐yl)propan‐2‐yl}‐2‐oxo‐1,3‐oxazolidine‐4‐carboxamide 1 (rovatirelin). The central nervous system (CNS) effect of rovatirelin after intravenous (iv) administration is 100‐fold higher than that of TRH. As 1 has four asymmetric carbons in its molecule, there are 16 stereoisomers. We synthesized and evaluated the anti‐hypothermic effect of all stereoisomers of 1 , which has the (4S),(5S),(2S),(2R) configuration from the N‐terminus to the C‐terminus, in order to clarify the structure?activity relationship (SAR) of stereoisomers. The (4R),(5R),(2R),(2S)‐isomer 16 did not show any anti‐hypothermic effect. Only the (4S),(5S),(2S),(2S)‐isomer 10 , which has the (2S)‐2‐methylpyrrolidine moiety at the C‐terminus showed the anti‐hypothermic effect similar to 1 . Stereoisomers, which have the (5R) configuration of the oxazolidinone at the N‐terminus and the (2R) configuration at the middle‐part, showed a much lower anti‐hypothermic effect than that of 1 . On the other hand, stereoisomers, which have the (4R) configuration of the oxazolidinone at the N‐terminus or the (2S) configuration of the C‐terminus, have little influence on the anti‐hypothermic effect.  相似文献   
46.
Novel thyrotropin-releasing hormone (TRH, pGlu-His-Pro-NH2) analogs, made by solid phase, were derived from the general scaffold pGlu-(D/L)Agl(X)-Pro-NH2 where Agl = aminoglycine. Analogs ranged from X being a proton to an acylating agent derived from substituted (aromatic heterocyclic rings) formic or acetic acids or an aminotriazolyl moiety (3′-amino-1H-1′,2′,4′-triazolyl) built on N of aminoglycine or Nβ of ,β-diaminoproprionic acid (Dpr). X was expected to mimic the electronic and structural characteristics of the imidazole ring of histidine. Analogs were purified by HPLC, characterized by mass spectrometry and isolated as either diastereoisomeric mixtures or pure isomers. Analogs, tested for their binding affinity to mouse pituitary TRH receptors, have apparent equilibrium inhibitory constants >1 μM.  相似文献   
47.
R Dular  F LaBella 《Life sciences》1977,21(10):1527-1534
Synthetic TRH, crude hypothalamic extract and partially purified prolactin releasing factor stimulated prolactin and growth hormone release from isolated secretory granules. Somatostatin and partially purified prolactin release-inhibiting factor inhibited release of both hormones. Calcium promoted hormone release from granules; its releasing action was potentiated by TRH and ionophore A23187 but reduced by somatostatin.  相似文献   
48.
Summary Chronic treatment (more than 3 d) of GH3 cells, cloned rat pituitary cells producing prolactin, with 100 nM TRH resulted in a 41% reduction in the rate of cell growth in a medium containing 0.5% fetal bovine serum. These effects of TRH appeared both in the medium containing a higher concentration of serum and in that containing six growth factors, i.e. insulin, transferrin, parathyroid hormone, fibroblast growth factor, triiodothyronine, and multiplication-stimulating activity (MSA) instead of serum. TRH stimulated prolactin production by GH3 cells in a dose-dependent manner both in the serum-supplemented and serum-free media. On the other hand, TRH, at 1 nM, elicited a 130% stimulation in the cellular growth, whereas, at concentrations of more than 10 nM, it inhibited the growth significantly. In the defined culture system, it was demonstrated that TRH stimulated prolactin production in the presence or absence of six growth factors, whereas its inhibitory effects on cellular growth appeared only in the presence of MSA regardless of the presence or absence of the other five factors. Furthermore, it was shown that a dose-dependent stimulatory effect of MSA on the growth of GH3 cells was suppressed by TRH. TRH exhibited only a stimulatory effect on cellular growth in the medium containing the five factors other than MSA. In conclusion, TRH could inhibit cell growth of GH3 in the presence of MSA in the defined medium or MSA-like factor(s) in the serum-supplemented medium.  相似文献   
49.
We have demonstrated that during opiate withdrawal, preprothyrotropin releasing hormone (preproTRH) mRNA is increased in neurons of the midbrain periaqueductal gray matter (PAG) while the concentration of TRH remained unaltered, suggesting that the processing of proTRH may be different in this region of the brain. The aim of the present study was to determine which of the proTRH-derived peptides are affected by opiate withdrawal in the PAG. These changes were compared to other TRH-containing areas such as the hypothalamic paraventricular nucleus (PVN), median eminence (ME) and the lateral hypothalamus (LH). Control and morphine-treated rats 24 h following naltrexone-precipitated withdrawal were decapitated and the brain microdissected. Pooled samples from each animal group were acid extracted, and peptides were electrophoretically separated then analyzed by specific radioimmunoassay. Opiate withdrawal caused a significant change in the level of some post-translational processing products derived from the TRH precursor. In the PAG, opiate withdrawal resulted in an accumulation of the intervening preproTRH(83-106) peptide from the N-terminal side of the prohormone, while the levels of the C-terminal preproTRH(208-285) peptide were reduced, with no change in preproTRH(25-50) or TRH, itself, as compared to control animals. Immunohistochemical analysis also showed significant increases in cellular preproTRH(83-106) peptide immunolabeling in the PAG. Opiate withdrawal in the lateral hypothalamus, unlike from the PAG, was accompanied by an increase in the concentration of TRH. In addition, western blot analysis showed that during opiate withdrawal, the mature form of the prohormone convertase 2 (PC2) increased only in PAG as compared with their respective controls. Thus, these results demonstrate a region-specific regulation of TRH prohormone processing in the brain, which may engage PC2, further suggesting a role for specific proTRH-derived peptides in the manifestations of opiate withdrawal.  相似文献   
50.
We found recently that thyrotropin-releasing hormone (TRH) acts as a selective agonist on the melanocortin MC1 receptor. While the TRH was capable of fully activating the MC1 receptor, it did not interact with any of the other MSH peptide binding G-protein coupled melanocortin receptor subtypes MC3-5. The MC1 receptor is a promising target for the development of anti-inflammatory and immuno-modulatory drugs, and it was of wide interest to explore the binding site of the TRH in this receptor. Here we have investigated the binding of TRH to MC1/MC3 chimeric receptors and used a partial least squares (PLS) modelling approach for the data evaluation. Statistically valid PLS models (R2 = 0.80; Q2 = 0.66) were obtained explaining the contribution of the amino acid sequence parts of the receptor chimeras for the binding of TRH. By using the variable importances in the projection (VIPs) deduced from the PLS-model, it was revealed that the transmembrane (TM) regions TM1 and TM2/TM3 contribute the most to the TRH binding. The TM6/TM7 also had a significant influence on the binding. Moreover, it was revealed that an interaction between TM1 and TM6/TM7 of the receptor contributed to the binding of TRH. The data are in full agreement with a 3D model of a TRH peptide and MC1 receptor complex and validates the location of the TRH ligand binding pocket between the TM1, TM2 and TM7 of the receptor.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号