首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   168篇
  免费   24篇
  2023年   1篇
  2022年   2篇
  2021年   2篇
  2019年   1篇
  2018年   1篇
  2017年   1篇
  2016年   14篇
  2015年   3篇
  2014年   8篇
  2013年   6篇
  2012年   8篇
  2011年   2篇
  2010年   3篇
  2009年   4篇
  2008年   5篇
  2007年   6篇
  2006年   3篇
  2005年   9篇
  2004年   5篇
  2003年   12篇
  2002年   7篇
  2001年   7篇
  2000年   9篇
  1999年   2篇
  1998年   2篇
  1997年   1篇
  1996年   2篇
  1995年   3篇
  1994年   3篇
  1993年   2篇
  1992年   5篇
  1991年   8篇
  1990年   6篇
  1989年   4篇
  1988年   2篇
  1987年   3篇
  1986年   2篇
  1985年   1篇
  1984年   5篇
  1983年   1篇
  1982年   2篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1978年   2篇
  1977年   2篇
  1976年   3篇
  1975年   3篇
  1974年   1篇
  1973年   1篇
排序方式: 共有192条查询结果,搜索用时 15 毫秒
41.
Among extrahepatic tissues the adrenal gland has one of the highest concentrations of apoE mRNA and the highest rate of apoE synthesis. In the present investigation several previously described in vivo treatments were used to assess the relationship between apoE expression and cellular cholesterol in the rat adrenal gland. Treatment of rats with 4-aminopyrazolo[3,4-d]pyrimidine (4-APP) to lower serum cholesterol concentration and deplete adrenal gland cholesterol content decreased adrenal gland apoE mRNA concentration. These adrenal responses were blocked by dexamethasone (DEX) suggesting that the effect of 4-APP occurred indirectly via stimulation of the adrenal gland by endogenous adrenocorticotrophic (ACTH). Relative to control rats, DEX treatment increased both adrenal gland cholesterol content and apoE mRNA concentration. Concurrent ACTH and DEX administration reduced both adrenal gland cholesterol content and apoE mRNA concentration relative to DEX-treated rats. ACTH administration also rapidly decreased adrenal gland apoE mRNA concentration and cholesterol content in rats pretreated with DEX. In all the above experiments, adrenal gland cholesterol content and apoE mRNA concentration were positively correlated (r = 0.78, P = 0.0001). In contrast, aminoglutethimide treatment, which blocks adrenal gland steroidogenesis and greatly increases adrenal gland cholesterol content, was without effect on apoE mRNA concentration. ACTH administration to rats treated with DEX + aminoglutethimide resulted in decreased adrenal apoE mRNA despite greatly increased adrenal cholesterol content. This uncoupling of adrenal gland cholesterol content and apoE mRNA concentration suggests that apoE mRNA expression and cellular cholesterol are regulated independently by ACTH.  相似文献   
42.
Summary The role of collagen in microvascular growth was investigated using the aortic ring model of angiogenesis. Collagen production by vasoformative outgrowths in plasma clot culture of rat aorta was either stimulated with ascorbic acid or inhibited with the proline analogue cis-hydroxyproline. Microvessels proliferating in the absence of ascorbic acid supplements became ectatic and developed large lumina. In contrast, newly formed microvessels in the presence of ascorbic acid remained small and maintained thin lumina throughout the angiogenic process. Biochemical studies demonstrated enhanced collagen production and deposition in cultures treated with ascorbic acid. Ultrastructural studies of these cultures showed a marked increase in newly formed interstitial collagen in the perivascular matrix and in regions of the plasma clot containing nonendothelial mesenchymal cells. Small microvessels with thin lumina similar to the ones observed in ascorbic acid-treated plasma clot cultures were obtained by growing aortic explants in gels of interstitial collagen in the absence of ascorbic acid. Inhibition of collagen production with the proline analogue cis-hydroxyproline had a marked anti-angiogenic effect in both plasma clot and collagen gel cultures. The anti-angiogenic effect of cis-hydroxyproline was abolished by addingl-proline to the culture medium, thereby restoring normal metabolism. These results support the hypothesis that angiogenesis is regulated by collagen production and suggest that the size of newly formed microvessels is influenced by the degree of collagenization of the extracellular matrix.  相似文献   
43.
Apolipoprotein (apo) B is a major protein component of plasma very low-density and low-density lipoproteins (VLDL and LDL, respectively) and serves as a recognition signal for the cellular binding and internalization of LDL by the apoB/E receptor. In contrast to the situation in mammals, avian apoB is also a component of specialized VLDL particles that are produced by the liver in response to estrogen. These particles transport cholesterol and triglyceride from the liver to the ovary for deposition in egg yolk. We report here the identification and characterization of cDNA clones for chicken apoB and their use in examining the tissue distribution and hormonal regulation of chicken apoB mRNA. The cDNA clones were identified by immunological screening of a phage lambda gt11 library constructed with hen liver mRNA and their identity was supported by sequence comparisons with mammalian apoB. The chicken apoB mRNA is approximately the same size as mammalian apoB mRNA (14 kb), and, as occurs in mammals, is present at high levels in liver and small intestine. Unlike mammals, the chicken apoB mRNA is also found at high levels in the kidney, consistent with previous protein biosynthetic studies. A DNA-excess solution-hybridization assay was used to quantitate apoB mRNA in these tissues and to examine its hormonal regulation. In control roosters the liver and kidney contained 65% and 10%, respectively, as much apoB mRNA as the small intestine. Within 24 h after estradiol administration, apoB mRNA was increased five- to seven-fold in liver but was unchanged in intestine and kidney. The increase in apoB mRNA content and the kinetics of induction parallel hepatic apoB synthesis, indicating that estrogen regulates apoB production through changes in the cellular abundance of apoB mRNA. The apoB mRNA increased rapidly following hormone treatment while the mRNA for another VLDL protein (apoII) showed a lag or slow phase of several hours before significant mRNA accumulation occurred. These data indicate that the liver can respond immediately to estrogen to increase apoB mRNA accumulation, while apoII mRNA accumulation appears to involve additional events or signals which occur slowly and are specific to this gene.  相似文献   
44.
45.
Immunoadhesins are engineered proteins combining the constant domain (Fc) of an antibody with a ligand‐binding (adhesion) domain. They have significant potential as therapeutic agents, because they maintain the favourable pharmacokinetics of antibodies with an expanded repertoire of ligand‐binding domains: proteins, peptides, or small molecules. We have recently reported that the addition of a cholesterol group to two HIV antibodies can dramatically improve their antiviral potency. Cholesterol, which can be conjugated at various positions in the antibody, including the constant (Fc) domain, endows the conjugate with affinity for the membrane lipid rafts, thus increasing its concentration at the site where viral entry occurs. Here, we extend this strategy to an HIV immunoadhesin, combining a cholesterol‐conjugated Fc domain with the peptide fusion inhibitor C41. The immunoadhesin C41‐Fc‐chol displayed high affinity for Human Embryonic Kidney (HEK) 293 cells, and when tested on a panel of HIV‐1 strains, it was considerably more potent than the unconjugated C41‐Fc construct. Potentiation of antiviral activity was comparable to what was previously observed for the cholesterol‐conjugated HIV antibodies. Given the key role of cholesterol in lipid raft formation and viral fusion, we expect that the same strategy should be broadly applicable to enveloped viruses, for many of which it is already known the sequence of a peptide fusion inhibitor similar to C41. Moreover, the sequence of heptad repeat‐derived fusion inhibitors can often be predicted from genomic information alone, opening a path to immunoadhesins against emerging viruses. Copyright © 2015 European Peptide Society and John Wiley & Sons, Ltd.  相似文献   
46.
47.
Scavenger receptor class B type I (SR-BI) is an essential receptor for hepatitis C virus (HCV) and a cell surface high-density-lipoprotein (HDL) receptor. The mechanism of SR-BI-mediated HCV entry, however, is not clearly understood, and the specific protein determinants required for the recognition of the virus envelope are not known. HCV infection is strictly linked to lipoprotein metabolism, and HCV virions may initially interact with SR-BI through associated lipoproteins before subsequent direct interactions of the viral glycoproteins with SR-BI occur. The kinetics of inhibition of cell culture-derived HCV (HCVcc) infection with an anti-SR-BI monoclonal antibody imply that the recognition of SR-BI by HCV is an early event of the infection process. Swapping and single-substitution mutants between mouse and human SR-BI sequences showed reduced binding to the recombinant soluble E2 (sE2) envelope glycoprotein, thus suggesting that the SR-BI interaction with the HCV envelope is likely to involve species-specific protein elements. Most importantly, SR-BI mutants defective for sE2 binding, although retaining wild-type activity for receptor oligomerization and binding to the physiological ligand HDL, were impaired in their ability to fully restore HCVcc infectivity when transduced into an SR-BI-knocked-down Huh-7.5 cell line. These findings suggest a specific and direct role for the identified residues in binding HCV and mediating virus entry. Moreover, the observation that different regions of SR-BI are involved in HCV and HDL binding supports the hypothesis that new therapeutic strategies aimed at interfering with virus/SR-BI recognition are feasible.Hepatitis C virus (HCV) is a global blood-borne pathogen, with 3% of the world''s population chronically infected. Most infections are asymptomatic, yet 60 to 80% become persistent and lead to severe fibrosis and cirrhosis, hepatic failure, or hepatocellular carcinoma (3). Currently available therapies are limited to the administration of pegylated alpha interferon in combination with ribavirin, which are expensive and often unsuccessful, with significant side effects (23, 36). Thus, the development of novel therapeutic approaches against HCV remains a high priority (18, 40, 60). Targeting the early steps of HCV infection may represent one such option, and much effort is being devoted to uncovering the mechanism of viral attachment and entry.The current view is that HCV entry into target cells occurs after attachment to specific cellular receptors via its surface glycoproteins E1 and E2 (27). The molecules to which HCV initially binds might constitute a diverse collection of cellular proteins, carbohydrates, and lipids that concentrate viruses on the cell surface and determine to a large extent which cell types, tissues, and organisms HCV can infect.CD81, claudin 1 (CLDN1), occludin (OCLN), and scavenger receptor class B type I (SR-BI) were previously shown to play essential roles in HCV cell entry (15, 22, 26, 35, 42, 43, 50, 63, 64).Recent reports suggest that CD81 engagement triggers intracellular signaling responses, ultimately leading to actin remodeling and the relocalization of CD81 to tight junctions (TJ) (11). Thus, CD81 may function as a bridge between the initial interaction of the virus with receptors on the basolateral surface of the hepatocyte and the TJ where two of the HCV entry molecules, CLDN1 and OCLN, are located. CD81 acts as a postbinding factor, and the TJ proteins CLDN1 and OCLN seem to be involved in late steps of HCV entry, such as HCV glycoprotein-dependent cell fusion (9, 11, 22). The discovery of TJ proteins as entry factors has added complexity to the model of HCV entry, suggesting parallels with other viruses like coxsackievirus B infection, where an initial interaction of the viral particle with the primary receptor decay-accelerating factor induces the lateral movement of the virus from the luminal surface to TJ, where coxsackievirus B binds coxsackievirus-adenovirus receptor and internalization takes place (17).Much less is known about the specific role of SR-BI in virus entry: neither the specific step of the entry pathway that SR-BI is involved in nor the protein determinants that mediate such processes are known. SR-BI is a lipoprotein receptor of 509 amino acids (aa) with cytoplasmic C- and N-terminal domains separated by a large extracellular domain (1, 13, 14). It is expressed primarily in liver and steroidogenic tissues, where it mediates selective cholesteryl ester uptake from high-density lipoprotein (HDL) and may act as an endocytic receptor (45, 46, 51, 52). SR-BI was originally identified as being a putative receptor for HCV because it binds soluble E2 (sE2) through interactions with E2 hypervariable region 1 (HVR1) (8, 50). RNA interference studies as well as the ability to block both HCV pseudoparticles (HCVpp) and cell culture-derived HCV (HCVcc) infections with anti SR-BI antibodies have confirmed its involvement in the HCV entry process (7, 8, 15, 26, 33, 63). Intriguingly, lipoproteins were previously shown to modulate HCV infection through SR-BI (12). It was indeed previously demonstrated that two natural ligands of SR-BI, HDL and oxidized low-density lipoprotein, can improve and inhibit HCV entry, respectively (57, 59). Moreover, small-molecule inhibitors of SR-BI-mediated lipid transfer (block of lipid transfer BLT-3 and BLT-4) abrogate the stimulation of HCV infectivity by human serum or HDL, suggesting that the enhancement of viral infection might be dependent on the lipid exchange activity of SR-BI (20, 58).We previously generated high-affinity monoclonal antibodies (MAbs) specific for human SR-BI and showed that they were capable of inhibiting the binding of SR-BI to sE2 and blocking HCVcc infection of human hepatoma cells (15). The HDL-induced enhancement of infection had no impact on the ability of the anti-SR-BI MAbs to block HCV infection, and the antibodies were effective in counteracting HCV infection even in the absence of lipoproteins. These data demonstrated that SR-BI participates in the HCV infection process as an entry receptor by directly interacting with viral glycoproteins. Here we have used one of the anti-SR-BI MAbs to show that SR-BI participates in an early step of HCV infection. By assays of binding of sE2 to SR-BI molecules from different species and to SR-BI mutants, we identified species-specific SR-BI protein residues that are required for sE2 binding. The functional significance of these observations was confirmed by the finding that SR-BI mutants with reduced binding to sE2 were also impaired in their ability to restore the infectivity of an SR-BI-knocked-down Huh-7.5 cell line. Finally, we demonstrated that SR-BI mutants with impaired sE2 binding can still form oligomeric structures and that they can bind the physiological ligand HDL and mediate cholesterol efflux, suggesting that distinct protein determinants are responsible for the interaction with HDL and the HCV particle.  相似文献   
48.
Understanding the neural mechanisms responsible for human social interactions is difficult, since the brain activities of two or more individuals have to be examined simultaneously and correlated with the observed social patterns. We introduce the concept of hyper-brain network, a connectivity pattern representing at once the information flow among the cortical regions of a single brain as well as the relations among the areas of two distinct brains. Graph analysis of hyper-brain networks constructed from the EEG scanning of 26 couples of individuals playing the Iterated Prisoner's Dilemma reveals the possibility to predict non-cooperative interactions during the decision-making phase. The hyper-brain networks of two-defector couples have significantly less inter-brain links and overall higher modularity--i.e., the tendency to form two separate subgraphs--than couples playing cooperative or tit-for-tat strategies. The decision to defect can be "read" in advance by evaluating the changes of connectivity pattern in the hyper-brain network.  相似文献   
49.
The tumor suppressor p53 is important in the decision to either arrest cell cycle progression or induce apoptosis in response to a variety of stimuli. p53 posttranslational modifications and association with other proteins have been implicated in the regulation of its stability and transactivation activity. Here we show that p53 is phosphorylated by the mitotic kinase Aurora-A at serine 215. Unlike most identified phosphorylation sites of p53 that positively associate with p53 function (Brooks, C. L., and Gu, W. (2003) Curr. Opin. Cell Biol. 15, 164-171), the phosphorylation of p53 by Aurora-A at Ser-215 abrogates p53 DNA binding and transactivation activity. Downstream target genes of p53, such as p21Cip/WAF1 and PTEN, were inhibited by Aurora-A in a Ser-215 phosphorylation-dependent manner (i.e. phosphomimic p53-S215D lost and non-phosphorylatable p53-S215A retained normal p53 function). As a result, Aurora-A overrides the apoptosis and cell cycle arrest induced by cisplatin and gamma-irradiation, respectively. However, the effect of Aurora-A on p53 DNA binding and transactivation activity was not affected by phosphorylation of Ser-315, a recently identified Aurora-A phosphorylation site of p53 (Katayama, H., Sasai, K., Kawai, H., Yuan, Z. M., Bondaruk, J., Suzuki, F., Fujii, S., Arlinghaus, R. B., Czerniak, B. A., and Sen, S. (2004) Nat. Genet. 36, 55-62). Our data indicate that phosphorylation of p53 at Ser-215 by Aurora-A is a major mechanism to inactivate p53 and can provide a molecular insight for Aurora-A function.  相似文献   
50.
Cisplatin and its analogues have been widely used for treatment of human cancer. However, most patients eventually develop resistance to treatment through a mechanism that remains obscure. Previously, we found that AKT2 is frequently overexpressed and/or activated in human ovarian and breast cancers. Here we demonstrate that constitutively active AKT2 renders cisplatin-sensitive A2780S ovarian cancer cells resistant to cisplatin, whereas phosphatidylinositol 3-kinase inhibitor or dominant negative AKT2 sensitizes A2780S and cisplatin-resistant A2780CP cells to cisplatin-induced apoptosis through regulation of the ASK1/JNK/p38 pathway. AKT2 interacts with and phosphorylates ASK1 at Ser-83 resulting in inhibition of its kinase activity. Accordingly, activated AKT2 blocked signaling down-stream of ASK1, including activation of JNK and p38 and the conversion of Bax to its active conformation. Expression of nonphosphorylatable ASK1-S83A overrode the AKT2-inhibited JNK/p38 activity and Bax conformational changes, whereas phosphomimic ASK1-S83D inhibited the effects of cisplatin on JNK/p38 and Bax. Cisplatin-induced Bax conformation change was inhibited by inhibitors or dominant negative forms of JNK and p38. In conclusion, our data indicate that AKT2 inhibits cisplatin-induced JNK/p38 and Bax activation through phosphorylation of ASK1 and thus, plays an important role in chemoresistance. Further, regulation of the ASK1/JNK/p38/Bax pathway by AKT2 provides a new mechanism contributing to its antiapoptotic effects.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号