首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1913篇
  免费   127篇
  国内免费   2篇
  2023年   26篇
  2022年   20篇
  2021年   60篇
  2020年   43篇
  2019年   41篇
  2018年   40篇
  2017年   42篇
  2016年   51篇
  2015年   70篇
  2014年   120篇
  2013年   169篇
  2012年   84篇
  2011年   119篇
  2010年   81篇
  2009年   94篇
  2008年   111篇
  2007年   107篇
  2006年   100篇
  2005年   70篇
  2004年   85篇
  2003年   62篇
  2002年   45篇
  2001年   19篇
  2000年   20篇
  1999年   42篇
  1998年   23篇
  1997年   14篇
  1996年   12篇
  1995年   21篇
  1994年   17篇
  1993年   25篇
  1992年   19篇
  1991年   22篇
  1990年   20篇
  1989年   6篇
  1988年   5篇
  1987年   9篇
  1986年   8篇
  1985年   12篇
  1984年   20篇
  1983年   15篇
  1982年   12篇
  1981年   4篇
  1980年   11篇
  1979年   8篇
  1977年   8篇
  1976年   7篇
  1974年   6篇
  1973年   5篇
  1971年   3篇
排序方式: 共有2042条查询结果,搜索用时 15 毫秒
41.
《遗传学报》2023,50(2):63-76
The phenomenon of planar cell polarity is critically required for a myriad of morphogenetic processes in metazoan and is accurately controlled by several conserved modules. Six “core” proteins, including Frizzled, Flamingo (Celsr), Van Gogh (Vangl), Dishevelled, Prickle, and Diego (Ankrd6), are major components of the Wnt/planar cell polarity pathway. The Fat/Dchs protocadherins and the Scrib polarity complex also function to instruct cellular polarization. In vertebrates, all these pathways are essential for tissue and organ morphogenesis, such as neural tube closure, left–right symmetry breaking, heart and gut morphogenesis, lung and kidney branching, stereociliary bundle orientation, and proximal–distal limb elongation. Mutations in planar polarity genes are closely linked to various congenital diseases. Striking advances have been made in deciphering their contribution to the establishment of spatially oriented pattern in developing organs and the maintenance of tissue homeostasis. The challenge remains to clarify the complex interplay of different polarity pathways in organogenesis and the link of cell polarity to cell fate specification. Interdisciplinary approaches are also important to understand the roles of mechanical forces in coupling cellular polarization and differentiation. This review outlines current advances on planar polarity regulators in asymmetric organ formation, with the aim to identify questions that deserve further investigation.  相似文献   
42.
The ability of myocardium to successfully compensate for, and adapt to, stress ultimately determines whether the heart will decompensate and fail, or whether it will instead maintain preserved function. Despite the importance of the myocardial response to environmental stress, very little is known with respect to the biochemical mechanisms that are responsible for mediating and integrating the stress response in the heart. In the present review we will summarize recent experimental material which suggests that cytokines that are expressed within the myocardium in response to a environment injury, namely tumor necrosis factor-alpha (TNF-α), interleukin-1 (IL-1) and interleukin-6 (IL-6), may play an important role in initiating and integrating homeostatic responses within the heart. However, these ‘stress-activated’ cytokines all have the potential to produce cardiac decompensation when expressed at sufficiently high concentrations. Accordingly, the theme that will emerge from this discussion is that the short-term expression of stress-activated cytokines within the heart may provide the heart with an adaptive response to stress, whereas long-term expression of these molecules may be frankly maladaptive by producing cardiac decompensation.  相似文献   
43.
The purpose of this study was to determine the relationship between concentrations of Zn and Cu and the activities of superoxide dismutase and glutathione peroxidase in the heart and liver of young rat pups whose dams were fed a diet supplemented with caffeine and/or Zn. Four groups of dams with their newborn pups were fed one of the following diets for 22 d: 20% protein basal diet; the basal diet supplemented with caffeine (2 mg/100 body wt); the basal diet supplemented with Zn (300 mg/kg diet); or the basal diet supplemented with caffeine plus Zn. The Cu levels in the livers of the pups were decreased by maternal intake of the caffeine and Zn diet. The maternal intake of the caffeine diet increased Mn-superoxide dismutase (MnSOD) activity and Cu, Zn-superoxide dismutase (CUZnSOD) in the heart of the pups. On the other hand, the activity of Cu,ZnSOD was significantly reduced in the liver of pups whose dams consumed a caffeine, Zn, or caffeine plus Zn diet. Cu, ZnSOD activity in the liver of the pups seems to be correlated with Cu levels in the tissue. Selenium-dependent glutathione peroxidase (GSH-Px) activities in the heart and liver showed no difference among the groups. The effect of dietary caffeine and/or Zn on the activity of antioxidant enzymes in the heart and liver were different in young rats. The activities of these enzymes in the heart were lower than in the liver of 22-d-old rats. Our experiments indicate that the heart has limited defenses against the toxic effects of peroxides when compared to the liver.  相似文献   
44.
Interaction of metabolic inhibitors with actin fibrils   总被引:3,自引:0,他引:3  
Summary The dependence of the arrangement of fibrillar actin in cultured endothelial cells on metabolic conditions was investigated with cellular elements derived from the heart of Xenopus laevis tadpoles. Either primary culture or an established cell line (XTH-2) were used in these studies The metabolic stage of the cells was influenced by inhibiting respiration and lactate production. The actin pattern was revealed either by indirect immunofluorescence or by tetramethylrhodaminyl (TRITC)-phalloidin fluorescence. Total block of energy supply causes in all cases a distinct loss of actin fibrils, while inhibition of respiration alone increases the variability of actin organization. In primary XTH cells but not in XTH-2 cells cyanide disintegrates most of the actin fibres during 3 h of treatment. This effect is independent of the inhibition of respiration, since actin gels prepared from skeletal muscle also undergo destruction in the presence of cyanide. It is concluded that the actin fibrils of the primary cells and the established line behave differently to changing metabolic conditions and to application of KCN.  相似文献   
45.
Summary Wound repair and proliferation were examined in the injured newt atrium with light- and electron-microscopic techniques including autoradiography. Hearts were injured by removing a piece approximately 0.5 mm2 of the atrial wall. The five-day wound was an endothelial and mesothelial-lined blood clot bordered by a 150-m necrotic zone. Repair progressed from the periphery inward with areas of macrophage activity replaced by fibroblasts and connective tissue. The wound at 25 days consisted of a scar with few myocytes. There was no difference in the proliferative behavior between the right and left atria. Proliferative cells were localized to a 500-m reactive zone surrounding the wound. The maximum mesothelial cell thymidine-labeling index of 20.5% and mitotic index of 1.4% were seen 5 days after injury. The peak connective tissue cell thymidine-labeling index of 10.2% and mitotic index of 0.4% were seen 10 days after wounding. The peak thymidine-labeling index of 9.8% for myocardial cells was recorded 10 days after injury with a mitotic index of 0.2%. Proliferation returned to control levels by 25 days post-injury. Electron microscopy demonstrated that myocytes engaged in DNA synthesis were indistinguishable from control myocytes. Z-band material was not observed in mitotic myocytes, but myofilaments and junctions were present.  相似文献   
46.
Summary The development of innervation to the atrial myocardium of rabbits from 20th day of gestation to 35 days postnatal was studied ultrastructurally by electron microscopy and by demonstration of catecholamines by histofluorescence. Special attention was directed to the first morphologic appearance of nerve fibers and terminals and the closeness of juxtaposition of terminals with myocardial cells. Adrenergic and cholinergic terminals were identified on the basis of their differential ability to take-up and store the false adrenergic neurotransmitter 5-hydroxydopamine. Adrenergic terminals were first encountered at 20 days of gestation whereas cholinergic terminals could not be positively identified until the 24th day of gestation. Throughout development adrenergic terminals were more numerous than cholinergic, about 71 % of the terminals encountered being adrenergic. Many terminals approach closely (20–30 nm) to the sarcolemma of the muscle cells of the atrium. In many instances adrenergic and cholinergic fibers travel together in the same nerve bundle and are closely apposed without intervening Schwann-cell cytoplasm. Such a relationship could allow peripheral interaction between these fibers in the myocardium.Supported in part by the Kentucky Heart Association, Human Development Studies Program of the University of Kentucky and DHEW Grant 1 RO1 HL 22226-01 HED from the National Heart, Lung and Blood Institute. The technical assistance of Merle Wekstein is appreciated  相似文献   
47.
48.
Carbamate kinase from Streptococcus faecalis is inactivated by butanedione in borate buffer, which implies the presence of an essential arginine at the active site of the enzyme. The inactivation reaction is first order in [butanedione] and a replot of the inactivation rate data infers that one arginine is modified. The enzyme is protected against inactivation by ADP, ATP, the metal-nucleotides and carbamyl phosphate but not by carbamate. Amino acid analyses reveal that one of three arginines is modified by butanedione in the absence of protecting agents, and the binding of ADP to the enzyme prevents modification. Thus, analysis of the data suggest that (i) substrate binding to arginine and (ii) protein conformational changes at the active site are responsible for protection of an essential arginine against modification by butanedione.  相似文献   
49.
The pH dependence of proton uptake upon binding of NADH to porcine heart mitochondrial malate dehydrogenase (l-malate: NAD+ oxidoreductase, EC 1.1.1.37) has been investigated. The enzyme has been shown to exhibit a pH-dependent uptake of protons upon binding NADH at pH values from 6.0 to 8.5. Enzyme in which one histidine residue has been modified per subunit by the reagent iodoacetamide (E. M. Gregory, M. S. Rohrbach, and J. H. Harrison, 1971, Biochim. Biophys. Acta253, 489–497) was used to establish that this specific histidine residue was responsible for the uptake of a proton upon binding of NADH to the native enzyme. It has also been established that while there is no enhancement of the nucleotide fluorescence upon addition of NADH to the iodoacetamide-modified enzyme, NADH is nevertheless binding to the modified enzyme with the same stoichiometry as with native enzyme. The data are discussed in relation to the involvement of the essential histidine residue in the catalytic mechanism of “histidine dehydrogenases” recently proposed by Lodola et al. (A. Lodola, D. M. Parker, R. Jeck, and J. J. Holbrook, 1978, Biochem. J.173, 597–605) and the catalytic mechanism of “malate dehydrogenases” recently proposed by L. H. Bernstein and J. Everse (1978, J. Biol. Chem.253, 8702–8707).  相似文献   
50.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号