首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   126篇
  免费   5篇
  国内免费   9篇
  2023年   2篇
  2022年   2篇
  2021年   6篇
  2020年   2篇
  2018年   3篇
  2017年   2篇
  2016年   2篇
  2015年   4篇
  2014年   12篇
  2013年   8篇
  2012年   9篇
  2011年   5篇
  2010年   6篇
  2009年   12篇
  2008年   13篇
  2007年   10篇
  2006年   6篇
  2005年   7篇
  2004年   3篇
  2003年   5篇
  2002年   1篇
  2001年   1篇
  2000年   2篇
  1999年   1篇
  1997年   1篇
  1995年   2篇
  1993年   4篇
  1992年   2篇
  1991年   1篇
  1988年   1篇
  1985年   1篇
  1984年   2篇
  1983年   1篇
  1982年   1篇
排序方式: 共有140条查询结果,搜索用时 15 毫秒
31.
32.
Complex spliceosomal organization ancestral to extant eukaryotes   总被引:16,自引:0,他引:16  
  相似文献   
33.
34.
ABSTRACT

This review highlights the unexpectedly complicated nuclear egress and nuclear import of small RNAs. Although nucleus/cytoplasm trafficking was thought to be restricted to snRNAs of many, but not all, eukaryotes, recent data indicate that such traffic may be more common than previously appreciated. First, in conflict with numerous previous reports, new information indicates that Saccharomyces cerevisiae snRNAs may cycle between the nucleus and the cytoplasm. Second, recent studies also provide evidence that other small RNAs that function exclusively in the nucleus—the budding yeast telomerase RNA and possibly small nucleolar RNAs—may exit to the cytoplasm, only to return to the nucleus. Third, nucleus/cytoplasm cycling of RNAs also occurs for RNAs that function solely in the cytoplasm, as it has been discovered that cytoplasmic tRNAs of budding yeast travel “retrograde” to the nucleus and, perhaps, back again to the cytoplasm to function in protein synthesis. Fourth, there is at least one example in ciliates of small double-stranded RNAs traveling multiple cycles between the cytoplasm and distinct nuclei to direct genome structure. This report discusses data that support or argue against nucleus/cytoplasm bidirectional movement for each category of small RNA and the possible roles that such movement may serve.  相似文献   
35.
RNA interference (RNAi) has emerged as a powerful tool to silence specific genes. Vector‐based RNAi systems have been developed to downregulate targeted genes in a spatially and temporally regulated fashion both in vitro and in vivo. The zebrafish (Danio rerio) is a model animal that has been examined based on a wide variety of biological techniques, including embryonic manipulations, forward and reverse genetics, and molecular biology. However, a heritable and tissue‐specific knockdown of gene expression has not yet been developed in zebrafish. We examined two types of vector, which produce small interfering RNA (siRNA), the direct effector in RNAi system; microRNA (miRNA) process mimicking vectors with a promoter for RNA polymerase II and short hairpin RNA (shRNA) expressing vector through a promoter for RNA polymerase III. Though gene‐silencing phenotypes were not observed in the miRNA process mimicking vectors, the transgenic embryos of the second vector (Tg(zU6‐shGFP)), shRNA expressing vector for enhanced green fluorescence protein, revealed knockdown of the targeted gene. Interestingly, only the embryos from Tg(zU6‐shGFP) female but not from the male fish showed the downregulation. Comparison of the quantity of siRNA produced by each vector indicates that the vectors tested here induced siRNA, but at low levels barely sufficient to silence the targeted gene.  相似文献   
36.
In nucleic acid polymerization reaction, pyrophosphorolysis is the reversal of nucleotide addition, in which the terminal nucleotide is excised in the presence of inorganic pyrophosphate (PPi). The CCA enzymes are unusual RNA polymerases, which catalyze CCA addition to positions 74-76 at the tRNA 3′ end without using a nucleic acid template. To better understand the reaction mechanism of CCA addition, we tested pyrophosphorolysis of CCA enzymes, which are divided into two structurally distinct classes. Here, we show that only class II CCA enzymes catalyze pyrophosphorolysis and that the reaction can initiate from all three CCA positions and proceed processively until the removal of nucleotide C74. Pyrophosphorolysis of class II enzymes establishes a fundamental difference from class I enzymes, and it is achieved only with the tRNA structure and with specific divalent metal ions. Importantly, pyrophosphorolysis enables class II enzymes to efficiently remove an incorrect A75 nucleotide from the 3′ end, at a rate much faster than the rate of A75 incorporation, suggesting the ability to perform a previously unexpected quality control mechanism for CCA synthesis. Measurement of kinetic parameters of the class II Escherichia coli CCA enzyme reveals that the enzyme catalyzes pyrophosphorolysis slowly relative to the forward nucleotide addition and that it exhibits weak binding affinity to PPi relative to NTP, suggesting a mechanism in which PPi is rapidly released after each nucleotide addition as a driving force to promote the forward synthesis of CCA.  相似文献   
37.
38.
Invasive bacterial pathogens induce an amino acid starvation (AAS) response in infected host cells that controls host defense in part by promoting autophagy. However, whether AAS has additional significant effects on the host response to intracellular bacteria remains poorly characterized. Here we showed that Shigella, Salmonella, and Listeria interfere with spliceosomal U snRNA maturation in the cytosol. Bacterial infection resulted in the rerouting of U snRNAs and their cytoplasmic escort, the survival motor neuron (SMN) complex, to processing bodies, thus forming U snRNA bodies (U bodies). This process likely contributes to the decline in the cytosolic levels of U snRNAs and of the SMN complex proteins SMN and DDX20 that we observed in infected cells. U body formation was triggered by membrane damage in infected cells and was associated with the induction of metabolic stresses, such as AAS or endoplasmic reticulum stress. Mechanistically, targeting of U snRNAs to U bodies was regulated by translation initiation inhibition and the ATF4/ATF3 pathway, and U bodies rapidly disappeared upon removal of the stress, suggesting that their accumulation represented an adaptive response to metabolic stress. Importantly, this process likely contributed to shape the host response to invasive bacteria because down-regulation of DDX20 expression using short hairpin RNA (shRNA) amplified ATF3- and NF-κB-dependent signaling. Together, these results identify a critical role for metabolic stress and invasive bacterial pathogens in U body formation and suggest that this process contributes to host defense.  相似文献   
39.
Formation of new blood vessels (angiogenesis) has been demonstrated to be a basic prerequisite for sustainable growth and proliferation of tumor. Several growth factors, cytokines, small peptides and enzymes support tumor growth either independently or in synergy. Decoding the crucial mechanisms of angiogenesis in physiological and pathological state has remained a subject of intense interest during the past three decades. Currently, the most widely preferred approach for arresting tumor angiogenesis is the blockade of vascular endothelial growth factor (VEGF) pathway; however, the clinical usage of this modality is still limited by several factors such as adverse effects, toxicity, acquired drug resistance, and non-availability of valid biomarkers. Nevertheless, angiogenesis, being a normal physiological process imposes limitations in maneuvering it as therapeutic target for tumor angiogenesis. The present review offers an updated relevant literature describing the role of well-characterized angiogenic factors, such as VEGF, basic fibroblast growth factor (bFGF), platelet derived growth factor (PDGF), placenta growth factor (PLGF), hepatocyte growth factor/scatter factor (HGF/SF) and angiopoetins (ANGs) in regulating tumor angiogenesis. We have also attempted to discuss tumor angiogenesis with a perspective of ‘an attractive target with emerging challenges’, along with the limitations and present status of anti-angiogenic therapy in the current state-of-the-art.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号