首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   7085篇
  免费   1377篇
  国内免费   1916篇
  2023年   298篇
  2022年   205篇
  2021年   194篇
  2020年   433篇
  2019年   438篇
  2018年   516篇
  2017年   477篇
  2016年   474篇
  2015年   460篇
  2014年   475篇
  2013年   550篇
  2012年   389篇
  2011年   439篇
  2010年   313篇
  2009年   391篇
  2008年   388篇
  2007年   394篇
  2006年   376篇
  2005年   315篇
  2004年   286篇
  2003年   279篇
  2002年   280篇
  2001年   232篇
  2000年   205篇
  1999年   181篇
  1998年   162篇
  1997年   126篇
  1996年   130篇
  1995年   117篇
  1994年   123篇
  1993年   87篇
  1992年   98篇
  1991年   57篇
  1990年   59篇
  1989年   55篇
  1988年   50篇
  1987年   34篇
  1986年   38篇
  1985年   48篇
  1984年   28篇
  1983年   17篇
  1982年   37篇
  1981年   24篇
  1980年   19篇
  1979年   19篇
  1978年   17篇
  1977年   6篇
  1976年   15篇
  1975年   6篇
  1958年   7篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Summary Plant carbon/nutrient balance has been implicated as an important factor in plant defensive chemistry and palatability to herbivores. We tested this hypothesis by fertilizing juvenile growth form Alaska paper birch and green alder with N, P and N-plus-P in a balanced 2x2 factorial experiment. Additionally, we shaded unfertilized plants of both species. Fertilization with N and N-plus-P increased growth of Alaska paper birch, reduced the concentration of papyriferic acid in internodes and increased the palatability of birch twigs to snowshoe hares. Shading decreased birch growth, decreased the concentration of papyriferic acid in internodes and increased twig palatability. These results indicate that the defensive chemistry and palatability of winter-dormant juvenile Alaska paper birch are sensitive to soil fertility and shade. Conversely the defensive chemistry and palatability of green alder twigs to snowshoe hares were not significantly affected by soil fertility or shade. The greater sensitivity of Alaska paper birch defensive chemistry and palatability to snowshoe hares in comparison to green alder is in agreement with the hypothesis that early successional woody plants that are adapted to high resource availability are more plastic in their chemical responses to the physical environment than are species from less favorable environments.  相似文献   
32.
Ola Broberg 《Hydrobiologia》1987,150(1):11-24
The acidified lakes Lake Gårdsjön and Lake Stora Hästevatten the reference lake have been monitored since 1979 and 1980 respectively. The lakes are situated in SW Sweden; in an area severly affected by acid deposition. Lake Gårdsjön was limed in spring 1982. This paper analyses changes in nutrient concentrations upon liming of Lake Gårdsjön. The liming of Lake Gårdsjön was followed by a slight increase in ammonium, nitrate, and dissolved organic nitrogen concentrations. A drastic decrease occurred in particulate nitrogen and particulate carbon, whereas dissolved organic carbon increased. Total phosphorus and particulate phosphorus concentrations were similar to pre-limed conditions. The long-term decrease in phosphorus concentration, exhibited by the reference lake, was not identified in Lake Gårdsjön after liming, but total phosphorus concentration was still less than half compared to Lake Gårdsjön in the early 1970's. Additional measures such as phosphorus fertilization, should in certain cases be considered in addition to liming if the goal is to restore lakes to their pre-acidic conditions.  相似文献   
33.
The zinc metalloenzyme carbonic anhydrase plays a critical role in inorganic carbon acquisition in marine diatoms, thus conferring on zinc a key role in oceanic carbon cycling. As a first step in determining the location and function of carbonic anhydrase (CA) in Bacillariophyceae, we purified and partially sequenced CA from T. weissflogii (Gru) Fryxell et Hasle (TWCA1) and cloned the corresponding cDNA (twca1). The twca1 sequence is different from other known algal carbonic anhydrase genes, and encodes a protein of roughly 34 kDa. The amino terminal amino acids sequenced from purified TWCA1 are 72 residues downstream of the putative starting methionine predicted by twca1. This difference may be due to the presence of a short-lived signal sequence designed to guide the enzyme to the correct cellular location. The absence of any homology between TWCA1 and previously sequenced CAs from Chlorophyceae may indicate either convergent evolution or that carbon acquisition represents a fundamental physiological difference among algal phyla.  相似文献   
34.
Symbiotic fungi and clonal plant physiology   总被引:2,自引:1,他引:1  
  相似文献   
35.
Respiration and growth of tomato fruit   总被引:1,自引:0,他引:1  
The respiration rate and diameter expansion growth of young tomato fruit were measured simultaneously and related to changes in carbon import and plant water status. Respiration rate was directly proportional to the volume expansion rate of fruit growing on isolated plant tops at a positive water potential, whether the growth rate was changed by changing the fruit temperature or by manipulating the source:sink ratio of the plants. From the latter relationship, the maintenance respiration rate was estimated by extrapolation to zero growth and was found to be about 25% of the respiration rate of the average fruit at 21°C. Alternatively, when carbon import was prevented by heat-ringing the fruit peduncle, the respiration rate of the fruit declined to about 40% of the control rate and remained steady, while the expansion rate then declined steadily to >10% of the control rate. These results show that fruit expansion was not contributing significantly to fruit respiration. Indeed, large fluctuations in fruit expansion rate could also be induced by repeated darkening and illumination of potted plants without a corresponding change in fruit respiration. Most significantly, fruit expansion was considerably reduced when plants were allowed to wilt, hut there was no change in fruit respiration rate unless the fruit peduncle was subsequently heat-ringed. We conclude that a major part of the respiration of young tomato fruit was determined by the rate of carbon import, or associated processes, and that fruit expansion per se can occur with relatively low respiratory costs.  相似文献   
36.

Objectives

We evaluate the potential of paired isotopic analysis of bone carbonate and collagen to examine the diet of post-medieval human and animal populations from England (17th–19th c.), including, for the first time, manufacturing towns in northern England. The potential for identifying C4 crop consumption is explored alongside regional and local patterning in diet by sex and socioeconomic status.

Materials and Methods

Humans (n = 216) and animals (n = 168) were analyzed from sites in London and northern England for both carbon and nitrogen isotopes of bone collagen (𝛿13Ccoll, 𝛿15Ncoll). Isotopic analysis of bone carbonates (𝛿13Ccarb, 𝛿18Ocarb) was carried out on all humans and 27 animals, using Fourier transform infrared spectroscopy–attenuated total reflectance to assess diagenesis.

Results

Variations in diet were observed between and within different populations by geographical location and socioeconomic status. Three pigs and one cow consumed C4 resources, indicating the availability of C4-fed animal protein. Londoners consumed more animal and marine protein and C4 resources. Middle- and upper-class populations from both London and northern populations also had greater access to these foods compared to those of lower status in the same regions.

Discussion

This substantial multi-isotope dataset deriving from bone carbonate and collagen combined from diverse post-medieval urban communities enabled, for the first time, the biomolecular identification of the dynamics of C4 consumption (cane sugar/maize) in England, providing insight into the dynamics of food globalization during this period. We also add substantially to the animal dataset for post-medieval England, providing further insight into animal management during a key moment of agricultural change.
  相似文献   
37.
The green marine macroalga Ulva lactuca L. was found to be able to utilize HCO3? from sea water in two ways. When grown in flowing natural sea water at 16°C under constant dim irradiance, photosynthesis at pH8.4 was suppressed by acetazolamide but unaffected by 4,4′-diisothiocyanostilbene-2,2′-disulphonate. These responses indicate that photosynthetic HCO3? utilization was via extracellular carbonic anhydrase (CA) -mediated dehydration followed by CO2 uptake. The algae were therefore described as being in a ‘CA state’. If treated for more than 10 h in a sea water flow-through system at pH9.8, these thalli became insensitive to acetazolamide but sensitive to 4,4′-diisothiocyanostilbene-2,2′-disulphonate. This suggests the involvement of an anion exchanger (AE) in the direct uptake of HCO3?, and these plants were accordingly described as being in an ‘AE state’. Such thalli showed an approximately 10-fold higher apparent affinity for HCO3? (at pH9.4) than those in the ‘CA state’, while thalli of both states showed a very high apparent affinity for CO2. These results suggest that the two modes of HCO3? utilization constitute two ways in which inorganic carbon may enter the Ulva lactuca cells, with the direct entry of HCO3?, characterizing the ‘AE state’, being inducible and possibly functioning as a complementary uptake system at high external pH values (e.g. under conditions conducive to high photosynthetic rates). Both mechanisms of entry appear to be connected to concentrating CO2 inside the cell, probably via a separate mechanism operating intracellularly.  相似文献   
38.
Abstract. Steady-state photosynthesis (Pn), post-illumination CO2 release rates (R), sucrose-phosphate synthase (SPS) activities, and levels of starch, sucrose and hexoses were measured in the source leaf of corn ( Zea mays L.) during a 16-h photoperiod at 800 μmol m 2 s 1. Pn and SPS activity remained constant. Carbohydrate pools increased at a linear rate, except the first and last hour of the photoperiod. Both the CO2 evolution rate at the moment of light removal (Rmax) and SPS activity decreased by one half after the onset of darkness (0 60 min). Sucrose diminished during this period by 40%, whereas the starch remained constant. Thereafter, starch mobilization began, followed by a gradual decline in leaf respiration. The average dark export rate was calculated to be 60% less than that during the day. Maintenance respiration (Rm) of an attached leaf after 48 h darkness was determined. Plants were illuminated for different intervals (e.g. 5, 10 or 20 min), each followed by dark periods sufficient for respiration to decline to Rm. The ratio of C assimilated in light to that released in dark was 6:1. After the 48-h dark period, the minimal period of illumination (Tmin) required to restore Pn and Rmax to the original level was determined. A mathematical analysis of the kinetics involved in the recovery of Pn and Rmax provided an estimate of turnover time (0.22h) and pool size 9.15 mmol m 2) for the newly fixed carbon.  相似文献   
39.
Dissolved organic carbon (DOC) plays an important role in surface water chemistry and ecology and trends in DOC concentration have been also associated with shifts in terrestrial carbon pools. Numerous studies have reported long-term trends in DOC concentration; however, some studies consider changes in average measured DOC whereas other compute discharge weighted concentrations. Because of differences in reporting methods and variable record lengths it is difficult to compare results among studies and make regional generalizations. Furthermore, changes in stream discharge may impact long-term trends in DOC concentration and the potentially subtle effect of shifts in stream flow may be missed if only measured DOC concentrations are considered. In this study we compare trends in volume-weighted vs. average measured DOC concentration between 1980 and 2001 at seven headwater streams in south-central Ontario, Canada that vary in wetland coverage and DOC (22-year mean vol. wt.) from 3.4 to 10.6 mg l−1. On average, annual measured DOC concentrations were 13–34% higher than volume-weighted values, but differences of up to 290% occurred in certain years. Estimates of DOC flux were correspondingly higher using measured concentration values. Both measured and volume-weighted DOC concentrations increased significantly between 1980 and 2001, but slopes were larger in measured data (0.04–0.35 mg l−1 year−1 compared with 0.05–0.15 mg l−1 year−1) and proportional increases at the most wetland-influenced sites ranged from 32 to 43% in volume-weighted DOC and from 52 to 75% in measured DOC. In contrast, DOC flux did not change with time when estimated using either method, because of the predominant influence of stream flow on DOC export. Our results indicate that changes in stream flow have an important impact on trends in DOC concentration, and extrapolation of trend results from one region to another should be made cautiously and consider methodological and reporting differences among sites.  相似文献   
40.
Stem water storage capacity and hydraulic capacitance (CS) play a crucial role in tree survival under drought-stress. To investigate whether CS adjusts to increasing water deficit, variation in stem water content (StWC) was monitored in vivo for 2 years and related to periodical measurements of tree water potential in Mediterranean Quercus ilex trees subjected either to permanent throughfall exclusion (TE) or to control conditions. Seasonal reductions in StWC were larger in TE trees relative to control ones, resulting in greater seasonal CS (154 and 80 kg m−3 MPa−1, respectively), but only during the first phase of the desorption curve, when predawn water potential was above −1.1 MPa. Below this point, CS decreased substantially and did not differ between treatments (<20 kg m−3 MPa−1). The allometric relationship between tree diameter and sapwood area, measured via electrical resistivity tomography, was not affected by TE. Our results suggest that (a) CS response to water deficit in the drought-tolerant Q. ilex might be more important to optimize carbon gain during well-hydrated periods than to prevent drought-induced embolism formation during severe drought stress, and (b) enhanced CS during early summer does not result from proportional increases in sapwood volume, but mostly from increased elastic water.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号