首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   39篇
  免费   2篇
  2022年   1篇
  2021年   2篇
  2020年   1篇
  2019年   2篇
  2018年   2篇
  2017年   1篇
  2016年   1篇
  2014年   2篇
  2013年   4篇
  2012年   1篇
  2011年   1篇
  2010年   3篇
  2009年   1篇
  2007年   1篇
  2006年   5篇
  1997年   1篇
  1994年   1篇
  1993年   1篇
  1991年   1篇
  1982年   1篇
  1979年   1篇
  1977年   3篇
  1974年   1篇
  1973年   1篇
  1971年   1篇
  1970年   1篇
排序方式: 共有41条查询结果,搜索用时 812 毫秒
31.
The vascularization of the pars intermedia of the hypophysis of the toad, Bufo bufo (L.) was studied by injection of a mixture of India-ink and gelatine into the circulatory system of the head via the arteria carotis communis. Further methyl-methacrylate corrosion casts of brains were made and the hypophysial region of the corrosion casts was examined with the scanning electron microscope. The results showed that the vascularization of the pars intermedia of the toad hypophysis consists of a single-layered vascular network, which is located on the ventral surface of the pars intermedia. The network is formed by capillaries, which primarily run caudally in a fan-like manner and which show only a few cross-connections. In the rostral region of the pars intermedia this network lies rather superficially, while in the caudal region it slightly penetrates the parenchyma. The vascular network originates from vessels of the neural stalk and from wide capillaries of the rostro-ventral region of the neurointermediate junction. The venous drainage of the pars intermedia is exerted by veins, which leave the caudal region and drain into the veins leaving the venous pole of the pars distalis. The flat, wide meshed vascular net on the ventral side of the pars intermedia, demonstrated in this study, fits into the concept that the pars intermedia of the anuran hypophysis is under the control of nerve fibers coming from the hypothalamus.  相似文献   
32.
33.
Integrins are cell adhesion receptors predominantly important during normal and tumor angiogenesis. A sequence present on several extracellular matrix proteins composed of Arg-Gly-Asp (RGD) has attracted attention due to its role in cell adhesion mediated by integrins. The development of ligands that can bind to integrins involved in tumor angiogenesis and brake disease progression has resulted in new investigational drug entities reaching the clinical trial phase in humans. The use of integrin-specific ligands can be useful for the vascularization of regenerative medicine constructs, which remains a major limitation for translation into clinical practice. In order to enhance vascularization, immobilization of integrin-specific RGD peptidomimetics within constructs is a recommended approach, due to their high specificity and selectivity towards certain desired integrins. This review endeavours to address the potential of peptidomimetic-coated biomaterials as vascular network promoters for regenerative medicine purposes. Clinical studies involving molecules tracking active integrins in cancer angiogenesis and reasons for their failure are also addressed.  相似文献   
34.
组织工程三大要素为种子细胞、支架材料和信号分子,干细胞因其多分化潜能成为热门的种子细胞。血管化问题是制约工程化组织应用于临床的问题之一。利用干细胞构建组织工程血管的手段之一是在分离培养得到足够的种子细胞后,通过生长因子、细胞外基质、外力作用、其他细胞等的调控实现内皮向分化。只有实现了成功的血管构建,工程化组织才能正常的发挥作用。近年来不少国内外专家学者通过细胞联合培养的方法,观察细胞间的相互作用对血管构建的影响,结果表明,细胞联合培养在血管的形成、存活、稳定方面起到了重要的作用,为组织工程血管化提供了有效的途径,本文就部分细胞联合培养在血管构建中的作用作一综述。  相似文献   
35.
Accumulating data implicate a pathological role for sympathetic neurotransmitters like neuropeptide Y (NPY) in breast cancer progression. Our group and others reported that NPY promotes proliferation and migration in breast cancer cells, however the angiogenic potential of NPY in breast cancer is unknown. Herein we sought to determine if NPY promotes angiogenesis in vitro by increasing vascular endothelial growth factor (VEGF) expression and release from 4T1 breast cancer cells. Western blot analysis revealed that NPY treatment caused a 52 ± 14% increase in VEGF expression in the 4T1 cells compared to non-treated controls. Using selective NPY Y-receptor agonists (Y1R, Y2R and Y5R) we observed an increase in VEGF expression only when cells were treated with Y5R agonist. Congruently, using selective Y1R, Y2R, or Y5R antagonists, NPY-induced increases in VEGF expression in 4T1 cells were attenuated only under Y5R antagonism. Endothelial tube formation assays were conducted using conditioned media (CM) from NPY treated 4T1 cells. Concentration-dependent increases in number of branch points and complete endothelial networks were observed in HUVEC exposed to NPY CM. CM from Y5R agonist treated 4T1 cells caused similar increases in number of branch points and complete endothelial networks. VEGF concentration was quantified in CM (ELISA) from agonist experiments; we observed a 2-fold and 2.5-fold increase in VEGF release from NPY and Y5R agonist treated 4T1 cells respectively. Overall these data highlight a novel mechanism by which NPY may promote breast cancer progression, and further implicate a pathological role of the NPY Y5R.  相似文献   
36.
BACKGROUND A major problem in the healing of bone defects is insufficient or absent blood supply within the defect.To overcome this challenging problem,a plethora of approaches within bone tissue engineering have been developed recently.Bearing in mind that the interplay of various diffusible factors released by endothelial cells(ECs)and osteoblasts(OBs)have a pivotal role in bone growth and regeneration and that adjacent ECs and OBs also communicate directly through gap junctions,we set the focus on the simultaneous application of these cell types together with platelet-rich plasma(PRP)as a growth factor reservoir within ectopic bone tissue engineering constructs.AIM To vascularize and examine osteogenesis in bone tissue engineering constructs enriched with PRP and adipose-derived stem cells(ASCs)induced into ECs and OBs.METHODS ASCs isolated from adipose tissue,induced in vitro into ECs,OBs or just expanded were used for implant construction as followed:BPEO,endothelial and osteogenic differentiated ASCs with PRP and bone mineral matrix;BPUI,uninduced ASCs with PRP and bone mineral matrix;BC(control),only bone mineral matrix.At 1,2,4 and 8 wk after subcutaneous implantation in mice,implants were extracted and endothelial-related and bone-related gene expression were analyzed,while histological analyses were performed after 2 and 8 wk.RESULTS The percentage of vascularization was significantly higher in BC compared to BPUI and BPEO constructs 2 and 8 wk after implantation.BC had the lowest endothelial-related gene expression,weaker osteocalcin immunoexpression and Spp1 expression compared to BPUI and BPEO.Endothelial-related gene expression and osteocalcin immunoexpression were higher in BPUI compared to BC and BPEO.BPEO had a higher percentage of vascularization compared to BPUI and the highest CD31 immunoexpression among examined constructs.Except Vwf,endothelial-related gene expression in BPEO had a later onset and was upregulated and well-balanced during in vivo incubation that induced late onset of Spp1 expression and pronounced osteocalcin immunoexpression at 2 and 8 wk.Tissue regression was noticed in BPEO constructs after 8 wk.CONCLUSION Ectopically implanted BPEO constructs had a favorable impact on vascularization and osteogenesis,but tissue regression imposed the need for discovering a more optimal EC/OB ratio prior to considerations for clinical applications.  相似文献   
37.
Assembling three-dimensional (3D) tissues from single cells necessitates the use of various advanced technological methods because higher-density tissues require numerous complex capillary structures to supply sufficient oxygen and nutrients. Accordingly, creating healthy culture conditions to support 3D cardiac tissues requires an appropriate balance between the supplied nutrients and cell metabolism. The objective of this study was to develop a simple and efficient method for low-temperature cultivation (< 37 °C) that decreases cell metabolism for facilitating the buildup of 3D cardiac tissues. We created 3D cardiac tissues using cell sheet technology and analyzed the viability of the cardiac cells in low-temperature environments. To determine a method that would allow thicker 3D tissues to survive, we investigated the cardiac tissue viability under low-temperature culture processes at 20–33.5 °C and compared it with the viability under the standard culture process at 37 °C. Our results indicated that the standard culture process at 37 °C was unable to support higher-density myocardial tissue; however, low-temperature culture conditions maintained dense myocardial tissue and prevascularization. To investigate the efficiency of transplantation, layered cell sheets produced by the low-temperature culture process were also transplanted under the skin of nude rats. Cardiac tissue cultured at 30 °C developed denser prevascular networks than the tissue cultured at the standard temperature. Our novel findings indicate that the low-temperature process is effective for fabricating 3D tissues from high-functioning cells such as heart cells. This method should make major contributions to future clinical applications and to the field of organ engineering.  相似文献   
38.
Summary InRana temporaria, the blood capillaries of the organon vasculosum hypothalami are the bilateral origin of the hypothalamic branch of the encephalo-posthypophysial portal vein. In the organon vasculosum hypothalami, pericapillary accumulations of monoamines occur. The peculiar Vascularization of the organon vaseulosum and the pericapillary accumulation of monoamines suggest a possible functional relation between the organon vasculosum and the neuro-intermediate lobe of the hypophysis via the encephalo-posthypophysial portal system.  相似文献   
39.
A pivotal requirement for the generation of vascularized tissue equivalents is the development of culture systems that provide a physiological perfusion of the vasculature and tissue-specific culture conditions. Here, we present a bioreactor system that is suitable to culture vascularized tissue equivalents covered with culture media and at the air–medium interface, which is a vital stimulus for skin tissue. For the perfusion of the vascular system a new method was integrated into the bioreactor system that creates a physiological pulsatile medium flow between 80 and 120 mmHg to the arterial inflow of the equivalent's vascular system. Human dermal microvascular endothelial cells (hDMECs) were injected into the vascular system of a biological vascularized scaffold based on a decellularized porcine jejunal segment and cultured in the bioreactor system for 14 days. Histological analysis and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) staining revealed that the hDMECs were able to recolonize the perfused vascular structures and expressed endothelial cell specific markers such as platelet endothelial cell adhesion molecule and von Willebrand factor. These results indicate that our bioreactor system can serve as a platform technology to generate advanced bioartificial tissues with a functional vasculature for future clinical applications.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号