首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   91篇
  免费   1篇
  国内免费   4篇
  2021年   1篇
  2020年   1篇
  2019年   9篇
  2018年   7篇
  2017年   2篇
  2016年   1篇
  2015年   2篇
  2014年   4篇
  2013年   8篇
  2012年   9篇
  2011年   10篇
  2010年   7篇
  2009年   5篇
  2008年   5篇
  2007年   5篇
  2006年   2篇
  2005年   3篇
  2004年   3篇
  2003年   4篇
  2002年   1篇
  2001年   1篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1996年   1篇
  1994年   1篇
  1991年   1篇
排序方式: 共有96条查询结果,搜索用时 156 毫秒
31.
To obtain information about the mechanism of apoptosis induced by oxidized low density lipoproteins (oxLDL) in atherosclerotic plaques, we examined the effects of lysophosphatidylcholine (LPC) and platelet-activating factor (PAF)-like lipids (PAF-LL), which can be derived from oxLDL, on rat vascular smooth muscle cells (VSMC). All the lipids with different structures examined induced apoptosis of VSMC, so we studied the mechanism of induction of apoptosis by LPC. LPC-induced apoptosis was inhibited by alpha-tocopherol (alpha-T) and cholesterol (Chol), but not by other antioxidants such as palmitoyl ascorbic acid and PAF receptor antagonist. The cells temporarily became spherical and highly permeable before induction of apoptosis, and their change in shape was prevented by alpha-T and Chol. From these results, we suggest that the apoptosis induced by oxLDL-derived phospholipids in VSMC is caused by temporary membrane distortion, not through specific receptors.  相似文献   
32.
Apelin(APJendogenousligand)是血管紧张素Ⅱ1型受体相关蛋白(angiotensin receptor-like 1,APJ)的内源性配体.Apelin/APJ系统在机体内广泛分布,在众多血管系统表达水平较高,如心血管系统、肺血管系统等.研究发现,apelin可调节血管张力,促进血管平滑肌细胞增殖、视网膜血管新生以及单核细胞向内皮细胞黏附,促进肝门静脉和冠状动脉侧枝形成等.本文就apelin调节血管功能及其相关疾病(高血压、肺动脉高压、动脉粥样硬化、胶质瘤、肺癌、门静脉高压、糖尿病血管并发症等)进行综述,揭示了apelin与血管及其相关疾病的内在联系,表明apelin/APJ可作为血管疾病的治疗靶点.  相似文献   
33.
34.
Previous evidence has indicated a beneficial role for aldehyde dehydrogenase 2 (ALDH2) in suppressing atherosclerotic plaque progression and instability. However, the underlying mechanism remains somewhat elusive. This study was designed to examine the effect of ALDH2 deficiency on high-cholesterol diet-induced atherosclerotic plaque progression and plaque vulnerability in atherosclerosis-prone ApoE knockout (ApoE?/?) mice with a focus on foam cell formation in macrophages and senescence of vascular smooth muscle cells (VSMCs). Serum lipid profile, plaque progression, and plaque vulnerability were examined in ApoE?/? and ALDH2/ApoE double knockout (ALDH2?/?ApoE?/?) mice after high-cholesterol diet intake for 8 weeks. ALDH2 deficiency increased the serum levels of triglycerides while it decreased levels of total cholesterol and high-density lipoprotein cholesterol. Unexpectedly, ALDH2 deficiency reduced the plaque area by 58.9% and 37.5% in aorta and aortic sinus, respectively. Plaque instability was aggravated by ALDH2 deficiency along with the increased necrotic core size, decreased collagen content, thinner fibrous cap area, decreased VSMC content, and increased macrophage content. In atherosclerotic lesions, ALDH2 protein was located in both macrophages and VSMCs. Further results revealed downregulated ALDH2 expression in aorta of aged ApoE?/? mice compared with young mice. However, in vitro study suggested that ALDH2 expression was upregulated in bone marrow-derived macrophages (BMDMs) with an opposite effect in VSMCs following 80 μg/ml oxidized low-density lipoprotein (oxLDL) treatment. Interestingly, ALDH2 deficiency displayed little effect in oxLDL-induced foam cell formation from BMDMs, while ALDH2 knockdown by siRNA and ALDH2 overexpression by lentivirus infection promoted and retarded oxLDL-induced VSMC senescence, respectively. Mechanistically, ALDH2 mitigated oxLDL-induced overproduction of mitochondrial reactive oxygen species (mROS) and activation of downstream p53/p21/p16 pathway. Clearance of mROS by mitoTEMPO significantly reversed the promotive effect of ALDH2 knockdown on VSMC senescence. Taken together, our data revealed that ALDH2 deficiency suppressed atherosclerotic plaque area while facilitating plaque instability possibly through accelerating mROS-mediated VSMC senescence.This article is part of a Special Issue entitled: Genetic and epigenetic regulation of aging and longevity edited by Jun Ren & Megan Yingmei Zhang.  相似文献   
35.
瘦素对血管平滑肌细胞周期蛋白D1、CDK2表达的影响   总被引:2,自引:0,他引:2  
目的观察瘦素对人平滑肌细胞周期时相及cyclin D1、CDK2表达的影响,探讨瘦素促进平滑肌细胞增殖的作用机制。方法取对数生长期的平滑肌细胞同步于G0期,分为加入浓度为0、20、40、80、100、200ng/ml瘦素的各组。作用24h后分别用MTT法检测细胞活性,用流式仪进行细胞周期时相的检测,Western blot法测定Cyclin D1、CDK2的表达。结果随着瘦素浓度的增加G0/G1期的平滑肌细胞逐渐减少,S期和G2/M期细胞逐渐增加,PI增殖指数逐渐增加。cyclin D1、CDK2蛋白的表达呈剂量依赖性的上升趋势。以上两项检测均在100ng/ml处达最高。结论瘦素上调cyclinD1、CDK2蛋白的表达,可能是促进平滑肌细胞增殖的机制之一。  相似文献   
36.
During atherogenesis, macrophage foam cells produce prodigious growth factors, cytokines, and chemokines, which play the central roles in inflammatory process in atherosclerotic plaque formation. In the present study, we identified a new protein marker, N-Myc downstream-regulated protein 2 (NDRG2), which is significantly up-regulated in oxidized low density lipoprotein (oxLDL) treated macrophages and in human atherosclerotic plaques. Over-expression and siRNA knockdown studies showed that NDRG2 is a negative regulator of platelet-derived growth factor (PDGF) and vascular endothelial growth factor (VEGF) productions in macrophages. Furthermore, we investigated the effects of NDRG2 on MAPK signal activation. Our results showed ERK1/2 activation, but not P38 or JNK1/2 activation, is responsible for regulation of NDRG2 on VEGF and PDGF productions. Consistent with the PDGF levels, the vascular smooth muscle cell (VSMC) proliferation was also regulated by the conditional medium of the oxLDL treated macrophages with NDRG2 knockdown or over-expression. Neutralizing anti-PDGF antibody can significantly inhibit the enhanced VSMC proliferation by macrophage medium with NDRG2 knockdown. Our present results demonstrate that NDRG2 participates in oxLDL-induced macrophage activation and modulates ERK1/2-dependent PDGF and VEGF production, which has potential application in atherogenesis.  相似文献   
37.
Obstructive sleep apnea is characterized by intermittent hypoxia (IH), and associated with cardiovascular diseases, such as stroke and heart failure. These cardiovascular diseases have a relation to atherosclerosis marked by the proliferation of vascular smooth muscle cells (VSMCs). In this study, we investigated the influence of IH on cultured rat aortic smooth muscle cell (RASMC). The proliferation of RASMC was significantly increased by IH without changing the level of apoptosis. In order to see what induces RASMC proliferation, we investigated the influence of normoxia (N)-, IH- and sustained hypoxia (SH)-treated cell conditioned media on RASMC proliferation. IH-treated cell conditioned medium significantly increased RASMC proliferation compared with N-treated cell conditioned medium, but SH-treated cell conditioned medium did not. We next investigated the epidermal growth factor (EGF) family as autocrine growth factors. Among the EGF family, we found significant increases in mRNAs for epiregulin (ER), amphiregulin (AR) and neuregulin-1 (NRG1) in IH-treated cells and mature ER in IH-treated cell conditioned medium. We next investigated the changes in erbB family receptors that are receptors for ER, AR and NRG1, and found that erbB2 receptor mRNA and protein expressions were increased by IH, but not by SH. Phosphorylation of erbB2 receptor at Tyr-1248 that mediates intracellular signaling for several physiological effects including cell proliferation was increased by IH, but not by SH. In addition, inhibitor for erbB2 receptor suppressed IH-induced cell proliferation. These results provide the first demonstration that IH induces VSMC proliferation, and suggest that EGF family, such as ER, AR and NRG1, and erbB2 receptor could be involved in the IH-induced VSMC proliferation.  相似文献   
38.
39.
40.
Nitric oxide (NO) works as a retrograde neurotransmitter in synapses, allows the brain blood flow and also has important roles in intracellular signaling in neurons from the regulation of the neuronal metabolic status to the dendritic spine growth. Moreover NO is able to perform post-translational modifications in proteins by the S-nitrosylation of the thiol amino acids, which is a physiological mechanism to regulate protein function. On the other hand, during aging and pathological processes the behavior of NO can turn harmful when reacts with superoxide anion to form peroxynitrite. This gaseous compound can diffuse easily throughout the neuronal membranes damaging lipid, proteins and nucleic acids. In the case of proteins, peroxynitrite reacts mostly with the phenolic ring of the tyrosines forming nitro-tyrosines that affects dramatically to the physiological functions of the proteins. Protein nitrotyrosination is an irreversible process that also yields to the accumulation of the modified proteins contributing to the onset and progression of neurodegenerative processes such as Alzheimer's disease or Parkinson's disease.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号