首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   52篇
  免费   2篇
  国内免费   3篇
  2021年   1篇
  2018年   1篇
  2016年   1篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   7篇
  2010年   3篇
  2009年   12篇
  2008年   5篇
  2007年   2篇
  2006年   5篇
  2005年   2篇
  2004年   3篇
  2002年   2篇
  2001年   2篇
  1998年   1篇
  1997年   1篇
  1993年   1篇
  1991年   1篇
  1982年   1篇
排序方式: 共有57条查询结果,搜索用时 46 毫秒
31.
准好氧填埋渗滤液水质变化特性研究   总被引:14,自引:0,他引:14  
在大型模拟填埋试验装置(21 m×3.8 m×6.0 m)上,研究了准好氧填埋渗滤液水质的主要指标CODCr、BOD、NH3+-N和pH的变化特性.结果表明,准好氧填埋结构下渗滤液CODCr、BOD浓度下降很快,没有出现在传统填埋场累积的现象,并且封场后39周分别降为173和30 mg·L-1;NH3+-N浓度下降更为显著,第39周降为1 mg·L-1,下降率达到99.6%,为渗滤液后续处理解决了NH3+-N浓度过高的难题;pH值在前2周略低于7,第3周后一直呈弱碱性.根据实验数据,拟合了准好氧填埋结构渗滤液污染物的衰减方程.  相似文献   
32.
Yellow-legged gull Larus michahellis populations have been studied on three archipelagos consisting of 20 islands distributed along 80 km of the French Mediterranean coastline. Population changes were analyzed between 1920 and 2006. In the first decades following their settlement on these islands, the yellow-legged gull populations showed a continuous exponential growth in the three archipelagos, in agreement with an annual geometric growth rate λ above 1. The population growth ceased to fit this model during the 1980s for the older colonies (Riou and Hyères Islands archipelagos). Thus, we focused on population changes occurring during the period 1982–2000, a pivotal period for which we have both precise census and anthropogenic food resource data, in order to determine environmental factors influencing these population changes using multiple linear regression models. An average annual growth rate of colony size was 1.02 for the last two decades. The changes in landfill availability, the gull density in 1982, and the nesting area in 1982 explained 84.4% of variation in colony size changes between 1982 and 2000. The yellow-legged gull changes on the islands in the last two decades increased as availability in anthropogenic food resources increased near the colony (positive ΔK). As a consequence, given no reduction in landfill activity or in accessibility for gulls, we expect this region to sustain continuous species expansion in the future.  相似文献   
33.
Background, aim, and scope  Management of the medical waste produced in hospitals or health care facilities has raised concerns relating to public health, occupational safety, and the environment. Life cycle assessment (LCA) is a decision-supporting tool in waste management practice; but relatively little research has been done on the evaluation of medical waste treatment from a life cycle perspective. Our study compares the environmental performances of two dominant technologies, hazardous waste incineration (HWI) as a type of incineration technology and steam autoclave sterilization with sanitary landfill (AL) as a type of non-incineration technology, for specific medical waste of average composition. The results of this study could support the medical waste hierarchy. Materials and methods  This study implemented the ISO 14040 standard. Data on steam autoclave sterilization were obtained from an on-site operations report, while inventory models were used for HWI, sanitary landfill, and residues landfill. Background data were from the ecoinvent database. The comparative LCA was carried out for five alternatives: HWI with energy recovery efficiencies of 0%, 15%, and 30% and AL with energy recovery efficiencies of 0% and 10%. Results  The assumptions on the time frame for landfill markedly affect the impact category scores; however, the orders of preference for both time frames are almost the same. HWI with 30% energy recovery efficiency has the lowest environmental impacts for all impact categories, except freshwater ecotoxicity. Incineration and sanitary landfill processes dominate global warming, freshwater aquatic ecotoxicity, and eutrophication of incineration and non-incineration alternatives, respectively. Dioxin emissions contribute about 10% to human toxicity in HWI without energy recovery alternatives, and a perturbation analysis yielded identical results. As regards eutrophication, non-incineration treatments have an approximately sevenfold higher impact than incineration treatments. Discussion  The differences between short-term and long-term time frame assumptions mainly are decided by heavy metals dissolved in the future leachate. The high heat value of medical waste due to high contents of biomass, plastic, and rubber materials and a lower content of ash, results in a preference for incineration treatments. The large eutrophication difference between incineration and non-incineration treatments is caused by different N element transformations. Dioxin emission from HWI is not the most relevant to human toxicity; however, large uncertainties could exist. Conclusions  From a life cycle perspective, the conventional waste hierarchy, implying incineration with energy recovery is better than landfill, also applies to the case of medical waste. The sanitary landfill process is the key issue in non-incineration treatments, and HWI and the subsequent residues landfill processes are key issues in incineration treatments. Recommendations and perspectives  Integrating the medical waste hierarchy and constructing a medical waste framework require broader technologies to be investigated further, based on a life cycle approach. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   
34.
35.
The biology of normal prion protein and the property of infectivity observed in abnormal folding conformations remain thinly characterized. However, enough is known to understand that prion proteins stretch traditional views of proteins in biological systems. Numerous investigators are resolving details of the novel mechanism of infectivity, which appears to feature a protein-only, homologous replication of misfolded isoforms. Many other features of prion biology are equally extraordinary. This review focuses on the status of infectious prions in various natural and man-made environments. The picture that emerges is that prion proteins are durable under extreme conditions of environmental exposure that are uncommon in biological phenomena, and this durability offers the potential for environmental reservoirs of persistent infectivity lasting for years. A recurrent theme in prion research is a propensity for these proteins to bind to mineral and metal surfaces, and several investigators have provided evidence that the normal cellular functions of prion protein may include metalloprotein interactions. This structural propensity for binding to mineral and metal ions offers the hypothesis that prion polypeptides are intrinsically predisposed to non-physiological folding conformations that would account for their environmental durability and persistent infectivity. Similarly, the avidity of binding and potency of prion infectivity from environmental sources also offers a recent hypothesis that prion polypeptides bound to soil minerals are actually more infectious than studies with purified polypeptides would predict. Since certain of the prion diseases have a history of epidemics in economically important animal species and have the potential to transmit to humans, urgency is attached to understanding the environmental transmission of prion diseases and the development of protocols for their containment and inactivation. Special issue article in honor of Dr. George DeVries.  相似文献   
36.
37.
Earthen mounds are commonly used in ecological restoration to increase environmental heterogeneity, create favorable microclimates and retain soil resources that promote plant establishment. Although mounding is commonly employed in restoration, few microtopography studies focus on the long-term effects of mounding on restored plant community development. We assessed the vegetation and physical environment of earthen mounds installed at a novel grassland ten years after restoration to look for patterns in plant community development. We used permutational multiple analysis of variance (PERMANOVA) to identify differences in plant community composition and the associated mound-driven environmental variables, summer soil moisture and height above peak soil inundation, in relation to mound position. We used indicator species analysis (ISA) to classify the species that defined mound top and intermound space plant communities. We found that mound position drove plot height above flooding and soil moisture while plant community composition was driven by plot height above flooding, summer soil moisture, and mound position. ISA showed that species colonized mound microsites differently: most wetland species occurred between mounds and xeric stress tolerators largely occupied dry mound tops. We visualized these differences with non-metric multidimensional scaling (NMDS) ordination, finding that species sorted out in multivariate space based on mound position. We conclude that mounding can have relatively long-term effects on plant community development, even in highly disturbed, minimally maintained restoration projects.  相似文献   
38.
The removal of phthalic acid diesters (PAEs) in municipal solid waste (MSW) from two simulated landfill reactors was compared. The results showed that the original concentrations of dimethyl phthalate (DMP), dibutyl phthalate (DBP) and dioctyl phthalate (DOP) in the refuse were 3.3 μg g−1, 18.5 μg g−1 and 0.8 μg g−1, respectively. The concentrations of DMP and DBP in both leachate and refuse decreased greatly during decomposition of the waste in both reactors. The major loss of PAEs from the landfill occurred during an active methanogenic environment with a low concentration of volatile fatty acids (VFA) in the later period. In addition, strong correlations were found between the residual DMP, DBP concentrations and the biologically degradable material (BDM) of the refuse. Finally, PAEs degraded more rapidly in the landfill that was operated in conjunction with the methanogenic reactor when compared to the landfill with direct leachate discharge.  相似文献   
39.
The behavior of dimethyl phthalate (DMP) from municipal solid waste (MSW) in the leachate and refuse of two simulated landfill bioreactors was compared. In one reactor, the leachate was circulated between a landfill and a methanogenic reactor, while the other reactor was operated using direct recirculation of the leachate. The results revealed that the original concentration of DMP in the refuse was approximately 3.3 μg g−1, and the concentration decreased greatly during decomposition of the waste in both reactors. The major loss of DMP from the landfill occurred in an active methanogenic environment in the later period, while the environment was acidic due to a high concentration of chemical oxygen demand (COD), volatile fatty acids (VFA), and contained a large volume of biologically degradable material (BDM) during the early stage. In addition, a high correlation was found between the residual DMP concentrations and the BDM of the refuse in both systems. Circulating the leachate between the landfill and a methanogenic reactor resulted in an increase in the biodegradability of MSW and the degree of waste stabilization. Furthermore, the removal of DMP was enhanced 14% in the landfill that was operated in conjunction with the methanogenic reactor when compared to the landfill in which there was direct leachate recirculation.  相似文献   
40.
The main goal of this study was to present a comparison of landfill performance with respect to solids decomposition. Biochemical methane potential (BMP) test was used to determine the initial and the remaining CH4 potentials of solid wastes during 27 months of landfilling operation in two pilot scale landfill reactors. The initial methane potential of solid wastes filled to the reactors was around 0.347 L/CH4/g dry waste, which decreased with operational time of landfill reactors to values of 0.117 and 0.154 L/CH4/g dry waste for leachate recirculated (R1) and non-recirculated (R2) reactors, respectively. Results indicated that the average rate constant increased by 32% with leachate recirculation. Also, the performance of the system was modeled using the BMP data for the samples taken from reactors at varying operational times by MATLAB program. The first-order rate constants for R1 and R2 reactors were 0.01571 and 0.01195 1/d, respectively. The correlation between the model and the experimental parameters was more than 95%, showing the good fit of the model.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号