首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   95篇
  免费   10篇
  2016年   1篇
  2015年   1篇
  2011年   1篇
  2009年   2篇
  2008年   3篇
  2006年   5篇
  2005年   1篇
  2004年   7篇
  2003年   3篇
  2002年   5篇
  2001年   2篇
  2000年   7篇
  1999年   1篇
  1998年   3篇
  1997年   4篇
  1996年   4篇
  1995年   6篇
  1994年   3篇
  1993年   7篇
  1992年   2篇
  1991年   2篇
  1989年   5篇
  1988年   2篇
  1987年   2篇
  1986年   3篇
  1985年   1篇
  1984年   2篇
  1983年   4篇
  1982年   3篇
  1981年   4篇
  1980年   1篇
  1979年   1篇
  1978年   2篇
  1973年   2篇
  1972年   1篇
  1969年   1篇
  1966年   1篇
排序方式: 共有105条查询结果,搜索用时 546 毫秒
31.
Factors affecting anther culturability of recalcitrant barley genotypes   总被引:6,自引:0,他引:6  
One major problem encountered with cereal anther culture is that some genotypes are low or non-responders to the technique. The objective of this study was to improve anther culture efficiency of recalcitrant barley (Hordeum vulgare L.) genotypes. Reciprocal F1s between the two low responsive cultivars, Morex and Steptoe, were used. These were chosen because doubled haploids (DH) were required from these genotypes for the North American Barley Genome Mapping project. Ficoll 400 at 200 g l–1 in the induction medium significantly increased green plant production compared to four other media formations containing different gelling/viscosity modifying agents. Cold pretreatment of donor spikes of 28 vs 14 d resulted in an increase in embryoid, total plant and green plant production. Anther culture response in these experiments was little influenced by donor plant growth conditions. Indole-3-acetic acid (1 mg l–1) or 1-naphthaleneacetic acid (2 mg l–1) in the induction medium did not affect anther culturability or plant regeneration. Based on this research, the negative genotypic effect for doubled haploid production could be diminished, which is desirable for practical application.Abbreviations BAP 6-benzylaminopurine - IAA Indole-3-acetic acid - LS Linsmaier & Skoog - NAA 1-naphthaleneacetic acid - DH doubled haploid  相似文献   
32.
Barley homolog of the Arabidopsis necrotic (disease lesion mimic) mutant HLM1 that encodes the cyclic nucleotide-gated ion channel 4 was cloned. Barley gene was mapped genetically to the known necrotic locus nec1 and subsequent sequence analysis identified mutations in five available nec1 alleles confirming barley homolog of Arabidopsis HLM1 as the NEC1 gene. Two fast neutron (FN) induced mutants had extensive deletions in the gene, while two previously described nec1 alleles had either a STOP codon in exon 1 or a MITE insertion in intron 2 which caused alternative splicing, frame shift and production of a predicted non-functional protein. The MITE insertion was consistent with the reported spontaneous origin of the nec1 Parkland allele. The third FN mutant had a point mutation in the coding sequence which resulted in an amino acid change in the conserved predicted cyclic nucleotide-gated ion channel pore region. The expression of two pathogenesis-related genes, HvPR-1a and β-1,3-glucanase, was elevated in two FN necrotic lines. Ten other members of the barley cyclic nucleotide-gated ion channel gene family were identified and their position on barley linkage map is reported. Electronic Supplementary Material Supplementary material is available for this article at and is accessible for authorized users.  相似文献   
33.
Brittle rachis is a head shattering mechanism of barley. Two tightly linked complementary genes, btr1 and btr2, were believed to control the non-brittle rachis trait. Position of non-brittle rachis loci btr1btr2 on the short arm of Chromosome 3 was investigated using RFLP markers. Two approaches were employed. First, a Hordeum vulgare subsp. spontaneum fragment that confers brittleness in a cv. Bowman near isogenic line was detected. This fragment is 18-33 cM in length and contains MWG798B, ABG057, MWG014, BCD706 and KFP216 markers of the short arm of Chromosome 3. In the second approach, position of btr1 locus in a H. vulgare subsp. spontaneum (Wadi Qilt 23-38)xH. vulgare subsp. vulgare (cv. Harrington) cross was detected using a selective genotyping approach in BC2F1 generation. F-tests and analysis of genotypic compositions of BC2F1 lines showed that btr1 locus, and supposedly the tightly linked btr2 locus, is in 4.3 cM KFP216-RisP114 interval of short arm of Chromosome 3. Results also yielded clues for the presence of at least two additional loci that affect the non-brittle rachis trait. Allelism tests using genotypes with known non-brittle rachis gene compositions provided additional evidence for presence of such loci.  相似文献   
34.
Moderate seed dormancy is desirable in barley (Hordeum vulgare L.). It is difficult for breeders to manipulate seed dormancy in practical breeding programs because of complex inheritance and large environmental effects. Quantitative trait locus (QTL) mapping opens a way for breeders to manipulate quantitative trait genes. A seed dormancy QTL, SD2, was mapped previously in an 8-cM interval near the chromosome 7 (5H) L telomere from a cross of 'Steptoe' (dormant)/'Morex' (non-dormant) by the North American Barley Genome Project using an interval mapping method and a relatively low-resolution genetic map. SD2 has a moderate dormancy effect, which makes it a promising candidate gene for moderate seed dormancy in barley cultivar development. The fine mapping of SD2 is required for efficient manipulation of SD2 in breeding and would facilitate the study of dormancy in barley. Ten different Morex isolines were generated, including regenerated Morex, of which nine lines had duplicates. The isolines together with Steptoe and Morex were grown in growth room and field environments for 2 years (2000 and 2001). In the growth room, relatively low growing temperatures (25 degrees C day/15 degrees C night) were employed to promote seed dormancy development. Seed germination percentage, determined at different post-harvest after-ripening periods, was used to measure seed dormancy. Fine mapping using the substitution mapping method based on differences among isolines resolved the SD2 QTL into an 0.8-cM interval between molecular markers MWG851D and MWG851B near the chromosome 7 (5H) L telomere. Relatively low temperatures (< or =25 degrees C) during seed development promoted the expression of the SD2 dormancy QTL. The chromosome region above the MWG851D-MWG851B interval might play a role in reducing barley seed dormancy during after-ripening.  相似文献   
35.
The dominant gene Rdg2a of barley conferring resistance to the hemi-biotrophic seed-borne pathogen Pyrenophora graminea is located in the distal region of chromosome arm 1 (7H)S. As the first step towards isolating the gene, a high-resolution genetic map of the region was constructed using an F2 population of 1,400 plants (ThibautRdg2a×Mirco). The map included six classes of resistance gene analogues (RGAs) tightly associated with Rdg2a. Rdg2a was delimited to a genetic interval of 0.14 cM between the RGAs ssCH4 and MWG851. Additional markers were generated using the sequence from the corresponding region on rice chromosome 6, allowing delimitation of the Rdg2a syntenic interval in rice to a 115 kbp stretch of sequence. Analysis of the rice sequence failed to reveal any genes with similarity to characterized resistance genes. Therefore, either the rice-barley synteny is disrupted in this region, or Rdg2a encodes a novel type of resistance protein.Communicated by P. Langridge  相似文献   
36.
37.
Many characterized plant disease resistance genes encode proteins which have conserved motifs such as the nucleotide binding site. Conservation extends across different species, therefore resistance genes from one species can be used to isolate homologous regions from another by employing DNA sequences encoding conserved protein motifs as probes. Here we report the isolation and characterization of a barley (Hordeum vulgare L.) resistance gene analog family consisting of nine members homologous to the maize rust resistance gene Rp1-D. Five barley Rp1-D homologues are clustered within approximately 400 kb on chromosome 1(7H), near, but not co-segregating with, the barley stem rust resistance gene Rpg1; while others are localized on chromosomes 3(3H), 5(1H), 6(6H) and 7(5H). Analyses of predicted amino-acid sequences of the barley Rp1-D homologues and comparison with known plant disease resistance genes are presented.  相似文献   
38.
cDNA probes encoding the barley endosperm ADP-glucose pyrophosphorylase (AGP) small subunit (bepsF2), large subunit (bepl10), and leaf AGP large subunit (blpl) were hybridized with barley genomic DNA blots to determine copy number and polymorphism. Probes showing polymorphism were mapped on a barley RFLP map. Probes that were not polymorphic were assigned to chromosome arms using wheat-barley telosomic addition lines. The data suggested the presence of a single-copy gene corresponding to each of the cDNA probes. In addition to the major bands, several weaker cross-hybridizing bands indicated the presence of other, related sequences. The weaker bands were specific to each probe and were not due to cross-hybridization with the other probes examined here. The endosperm AGP small subunit (bepsF2) majorband locus was associated with chromosome 1P and designated Aga1. The endosperm AGP large subunit (bepl10) major-band locus was mapped to chromosome 5M and designated Aga7. The endosperm AGP large-subunit minor bands were not mapped. The leaf AGP large-subunit major band was associated with chromosome 7M and designated Aga5. One of the leaf AGP large-subunit minor bands was mapped to chromosome 5P and designated Aga6. A clone for the wheat endosperm AGP large-subunit (pAga7) hybridized to the same barley genomic DNA bands as the corresponding barley probe indicating a high degree of identity between the two probes.  相似文献   
39.
Anther culture and Hordeum bulbosum-derived doubled haploid (DH) lines of barley (Hordeum vulgare L.) were analyzed for RFLP and RAPD polymorphisms. Polymorphisms were not detected in the anther culture-or H. bulbosum-derived DH lines among 273 RFLP and 89 polymerase chain reaction (PCR)-amplified DNA fragments assayed. It was calculated that base substitution or small deletion/insertion mutations had not been induced among 401 640 by screened. Large deletion/insertion mutations were not observed among 33 Mb screened. Polymorphisms were observed when DNA was digested with the methylation-sensitive restriction enzymes HpaII and MspI: these RFLPs originated primarily from the anther culture-derived doubled haploids. The data indicate that heritable DNA methylation changes had occurred during DH production, particularly with the anther culture method.  相似文献   
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号