首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   171篇
  免费   2篇
  国内免费   2篇
  2023年   1篇
  2022年   3篇
  2021年   8篇
  2020年   2篇
  2019年   3篇
  2018年   2篇
  2017年   3篇
  2016年   4篇
  2015年   7篇
  2014年   7篇
  2013年   12篇
  2012年   8篇
  2011年   12篇
  2010年   6篇
  2009年   11篇
  2008年   5篇
  2007年   10篇
  2006年   6篇
  2005年   9篇
  2004年   7篇
  2003年   5篇
  2002年   4篇
  2001年   2篇
  2000年   2篇
  1999年   2篇
  1998年   5篇
  1996年   3篇
  1995年   1篇
  1994年   1篇
  1993年   1篇
  1992年   6篇
  1991年   4篇
  1990年   2篇
  1989年   1篇
  1986年   1篇
  1985年   1篇
  1984年   1篇
  1983年   1篇
  1982年   4篇
  1981年   1篇
  1978年   1篇
排序方式: 共有175条查询结果,搜索用时 15 毫秒
31.
The energetic adaptations of non-breeding Tengmalm's owls (Aegolius funereus) to temperature and fasting were studied during the birds' autumnal irruptions in western Finland. Allometric analysis (including literature data and two larger owl species measured in this study) indicates that the basal metabolic rate of owls is below the mean level of non-passerine birds. However, the basal metabolic rate of the 130-g Tengmalm's owl (1.13 W) is higher than in other owls of similar size. This is probably related to its northern distribution and nomadic life history. Relative to its size, Tengmalm's owl has excellent cold resistance due to effective insulation (lower critical temperature +10°C, minimum conductance 0.19 mW·cm-2·°C-1). Radiotelemetric measurements of body temperature showed that the level of body temperature is lower than for birds in general (39.4°C at zero activity) and that the amplitude of the diurnal cycle is also low (0.2–0.6°C). In contrast to many other small birds, Tengmalm's owls do not enter hypothermia during a 5-day fast at thermoneutrality or in cold. Moreover, while the metabolic rate per bird shows the expected mass-dependent decrease, the mass-specific rate decreases only slightly during the fast. In line with this, there was no decrease in the plasma triiodothyronine concentration during the fast in the owl, whereas a dramtic drop was observed in the pigeon and Japanese quail that were used as a reference. Despite this, the owl has an excellent capacity for fasting because of its ability to accumulate extensive fat depots and its low overall metabolic rate. Fasting reduced evaporative water loss to 50% of that in the fed state. Calculations show that the oxygen consumption observed in fasting birds would involve a production of metabolic water barely sufficient to compensate for evaporative water loss. The threat of dehydration may thus set a limit to the decrease in metabolic rate in fasting owls (owls rely totally on water either ingested with food or produced metabolically). We conclude that the metabolic strategy in Tengmalm's owl is largely dictated by an evolutionary pressure for fasting endurance. With the restrictions set by small body size and water economy, this bird has apparently taken these adaptations to an extreme. The constraints that preclude hypothermia, which could increase the capacity for fasting even more, remain unknown.Abbreviations BM body mass - BMR basal metabolic rate - EWL vaporative water loss - MR metabolic rate - T3 triiodothyronine - T a ambient temperature - T b body temperature - VO2 oxygen consumption  相似文献   
32.
S Apte  M G Mattei  B R Olsen 《FEBS letters》1991,280(2):393-396
Energy depletion by reduced food intake over 4 days resulted in a 73% reduction in total rat liver triacylglycerols (TG). In liver TG of energy-depleted rats, dilinoleoyl oleoyl glycerol (OLL) and trilinoleoyl glycerol (LLL)) were quantitatively increased by 85% and 147%, respectively. The net increase in linoleoyl-enriched species could be quantitatively accounted for by the release of linoleate from monolinoleoyl species and its subsequent reacylation into dilinoleoyl species and trilinolein during energy depletion. Hence while palmitate, oleate and some linoleate are being hydrolyzed, presumably for oxidation some linoleate is retained and contributes to the remodelling of hepatic triacylglycerols during energy deficit.  相似文献   
33.
King penguins (Aptenodytes patagonicus) can fast for over a month. However, they return to sea to forage before their body mass reaches a critical value (cMb), beyond which there is an increase in rate of mass loss and in protein catabolism, termed phase III of fasting. Thus when studying king penguins onshore, accurate estimation of their cMb and, in turn, the date at which that body mass would be reached, will be informative to behavioural and physiological data being collected. For penguins being studied during fasts in captivity, knowing cMb is particularly important because of the need to release the birds back into their colony while they are still in good nutritional condition. The present study investigates the validity of using measures of beak, flipper and foot length together to estimate cMb in king penguins and provides a simple and effective prediction equation for researchers. The three morphometric measurements, along with body mass just prior to going to sea after the moult fast (taken to represent cMb), were obtained for nine king penguins in a colony at the Crozet Archipelago. A multiple linear regression of the three morphometric measurements against cMb provided an R 2 of 71.2%. Mean absolute percentage error of the estimate of cMb over the nine birds was 8.82 ± 1.20%. The described technique could probably be employed for estimating cMb in other long-fasting seabirds.  相似文献   
34.
Intracellular triacylglycerol (TG) hydrolysis and fatty acid release by the white adipose tissue (WAT) during a fast is stimulated by counter-regulatory factors acting in concert, although how adipocytes integrate these lipolytic inputs is unknown. We tested the role of angiopoietin-like 4 (Angptl4), a secreted protein induced by fasting or glucocorticoid treatment, in modulating intracellular adipocyte lipolysis. Glucocorticoid receptor blockade prevented fasting-induced tissue Angptl4 expression and WAT TG hydrolysis in mice, and TG hydrolysis induced by fasts of 6 or 24 h was greatly reduced in mice lacking Angptl4 (Angptl4(-/-)). Glucocorticoid treatment mimicked the lipolytic effects of fasting, although with slower kinetics, and this too required Angptl4. Thus, fasting-induced WAT TG hydrolysis requires glucocorticoid action and Angptl4. Both fasting and glucocorticoid treatment also increased WAT cAMP levels and downstream phosphorylation of lipolytic enzymes. Angptl4 deficiency markedly reduced these effects, suggesting that Angptl4 may stimulate lipolysis by modulating cAMP-dependent signaling. In support of this, cAMP levels and TG hydrolysis were reduced in primary Angptl4(-/-) murine adipocytes treated with catecholamines, which stimulate cAMP-dependent signaling to promote lipolysis, and was restored by treatment with purified human ANGPTL4. Remarkably, human ANGPTL4 treatment alone increased cAMP levels and induced lipolysis in these cells. Pharmacologic agents revealed that Angptl4 modulation of cAMP-dependent signaling occurs upstream of adenylate cyclase and downstream of receptor activation. We show that Angptl4 is a glucocorticoid-responsive mediator of fasting-induced intracellular lipolysis and stimulates cAMP signaling in adipocytes. Such a role is relevant to diseases of aberrant lipolysis, such as insulin resistance.  相似文献   
35.
We measured metabolic hormones and several key metabolites in breeding adult male northern elephant seals to examine the regulation of fuel metabolism during extended natural fasts of over 3 months associated with high levels of energy expenditure. Males were sampled twice, early and late in the fast, losing an average of 23% of body mass and 47% of adipose stores between measurements. Males exhibited metabolic homeostasis over the breeding fast with no changes in glucose, non-esterified fatty acids, or blood urea nitrogen. Ketoacids increased over the fast but were very low when compared to other fasting species. Changes within individuals in total triiodothyronine (tT3) were positively related to daily energy expenditure (DEE) and protein catabolism. Differences in levels of thyroid hormones relative to that observed in weaned pups and females suggest a greater deiodination of T4 to support the high DEE of breeding males. Relative levels of leptin and ghrelin were consistent with the suppression of appetite but a significant reduction in growth hormone across the fast was contrary to expectation in fasting mammals. The lack of the increase in cortisol during fasting found in conspecific weaned pups and lactating females may contribute to the ability of breeding males to spare protein despite high levels of energy expenditure. Together these findings reveal significant differences with conspecifics under varying nutrient demands, suggesting metabolic adaptation to extended high energy fasts.  相似文献   
36.
目的:研究前期建立的脂联素基因剔除小鼠模型在基础状态的葡萄糖代谢及骨代谢状态。方法:采用长期追踪野生型和该基因剔除纯合子小鼠的体重和空腹血糖水平,并进行葡萄糖耐量(GTT)和胰岛素耐量(ITT)试验以评价该小鼠的葡萄糖代谢能力。对骨代谢的初步研究采用检测小鼠骨密度(BMD)的方式。结果:发现该基因剔除小鼠在6w时,出现空腹血糖比对照组显著低下的现象,而随着鼠龄的增长,血糖水平又趋于正常。GTT和ITT试验证明该基因剔除小鼠无糖尿病或胰岛素抵抗表型。BMD检测亦显示该小鼠在基础状态下无骨密度低下的现象。结论:脂联素基因剔除小鼠在基础状态下并无显著的糖代谢和骨代谢异常。  相似文献   
37.
During fasting, mice (Mus musculus) undergo daily bouts of torpor, considerably reducing body temperature (Tb) and metabolic rate (MR). We examined females of different laboratory strains (Balb/c, C57/6N, and CD1) to determine whether liver mitochondrial metabolism is actively reduced during torpor. In all strains, we found that state 3 (phosphorylating) respiration rate measured at 37 °C was reduced up to 35% during torpor for at least one of the substrates (glutamate and succinate) used to fuel respiration. The extent of this suppression varied and was correlated with Tb at sampling. This suggests that, at the biochemical level, the transition to and from a hypometabolic torpid state is gradual. In fasted non-torpid animals, Tb and MR still fluctuated greatly: Tb dropped by as much as 4 °C and MR was reduced up to 25% compared to fed controls. Changes in Tb and MR in fasted, non-torpid animals were correlated with changes in mitochondrial state 3 respiration rate measured at 37 °C. This suggests that fasting mice may conserve energy even when not torpid by occasionally reducing Tb and mitochondrial oxidative capacity to reduce MR. Furthermore, proton conductance was higher in torpid compared to non-torpid animals when measured at 15 °C (the lower limit of torpid Tb). This pattern is similar to that reported previously for daily torpor in Phodopus sungorus.  相似文献   
38.
动物行为和生理活动的适应性调节是应对食物资源变化的主要策略。为探讨禁食和重喂食对大绒鼠体重、产热和血清瘦素的影响,测定了禁食和重喂食条件下大绒鼠的体重、体脂重量、静止代谢率、身体组成、血清瘦素含量以及禁食后重喂食期间的摄食量。结果显示:禁食导致大绒鼠体重、体脂重量和静止代谢率显著下降,重喂食后体重和静止代谢率能够恢复到对照组水平,而体脂重量却不能恢复。禁食12 h 后血清瘦素含量快速下降,重喂食后未能恢复到对照水平。此外,大绒鼠在禁食后重喂食期间摄食量没有补偿性增加,血清瘦素含量与体脂重量呈正相关关系。这些结果很可能反映出大绒鼠能调节自身生理状况以适应短期的能量缺乏,主要通过降低体重、血清瘦素含量和代谢活性器官重量以减少能量消耗。禁食后重喂食时大绒鼠没有摄食过量。血清瘦素的下降早于体重和体脂的下降。  相似文献   
39.
BackgroundAssociation between fasting serum glucose (FSG) and certain mineral elements has been extensively reported. Investigation regarding multi-element exposure among subjects with different exposure level is warranted to confirm the association and further explore dose-dependent relationship.MethodsA total of 3488 participants were recruited from four counties of Hunan province, South China. Basic characteristics were collected by face to face interview and 23 elements in plasma were determined by inductively coupled plasma mass spectrometry. We applied fully adjusted generalized linear regression model and multivariable restricted cubic spline function to test the association and dose-response relationship of FSG with 23 elements.ResultsThe results indicated that FSG was positively associated with plasma78selenium level [regression coefficient (β), 0.001; 95 % confidence interval (CI), 0.001, 0.001] in a dose-dependent manner, robust to the adjustment for suspected covariates and stratification by age, gender, BMI and smoking status. A negative association was found between FSG and plasma 208lead (β, -0.004; 95 % CI, -0.016, -0.002), 52chromium (β, -0.002; 95 % CI, -0.004, -0.001) and 47titanium (β, -0.001; 95 % CI, -0.002, -0.001).Conclusion78selenium was positively while 208lead, 52chromium and 47titanium were negatively associated with FSG in the present study. However, prospective studies are needed to confirm the results.  相似文献   
40.
To elucidate the physiological role of CREBH, the hepatic mRNA and protein levels of CREBH were estimated in various feeding states of wild and obesity mice. In the fast state, the expression of CREBH mRNA and nuclear protein were high and profoundly suppressed by refeeding in the wild-type mice. In ob/ob mice, the refeeding suppression was impaired. The diet studies suggested that CREBH expression was activated by fatty acids. CREBH mRNA levels in the mouse primary hepatocytes were elevated by addition of the palmitate, oleate and eicosapenonate. It was also induced by PPARα agonist and repressed by PPARα antagonist. Luciferase reporter gene assays indicated that the CREBH promoter activity was induced by fatty acids and co-expression of PPARα. Deletion studies identified the PPRE for PPARα activation. Electrophoretic mobility shift assay and chromatin immunoprecipitation (ChIP) assay confirmed that PPARα directly binds to the PPRE. Activation of CREBH at fasting through fatty acids and PPARα suggest that CREBH is involved in nutritional regulation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号