首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   853篇
  免费   56篇
  国内免费   13篇
  2023年   6篇
  2022年   6篇
  2021年   13篇
  2020年   21篇
  2019年   16篇
  2018年   32篇
  2017年   26篇
  2016年   27篇
  2015年   39篇
  2014年   66篇
  2013年   77篇
  2012年   45篇
  2011年   72篇
  2010年   55篇
  2009年   50篇
  2008年   47篇
  2007年   43篇
  2006年   55篇
  2005年   44篇
  2004年   52篇
  2003年   37篇
  2002年   26篇
  2001年   5篇
  2000年   15篇
  1999年   10篇
  1998年   2篇
  1997年   3篇
  1996年   2篇
  1995年   9篇
  1994年   4篇
  1993年   3篇
  1992年   3篇
  1991年   2篇
  1989年   1篇
  1988年   1篇
  1986年   1篇
  1985年   2篇
  1980年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有922条查询结果,搜索用时 31 毫秒
31.
Abstract

Objectives

Some studies have indicated the pathophysiological importance of reactive oxygen species (ROS) in patients with nephrotic syndrome. Myeloperoxidase (MPO) is a leukocyte-derived enzyme-generating ROS that has been proposed to exert a wide array of pro-atherogenic effects throughout all stages of the atherosclerotic process. The aim of this study was to investigate the serum malondialdehyde (MDA) levels, MPO and catalase activities in patients with adult nephrotic syndrome.

Patients and Methods

Twenty-four patients with nephrotic syndrome and 24 healthy controls were enrolled. Serum MPO activity, catalase activity, and MDA levels were assessed.

Results

Serum MPO activity and MDA levels were signi?cantly higher in patients with nephrotic syndrome than controls (both, P < 0.001), while catalase activity was signi?cantly lower (P < 0.001). Serum catalase activity was found to be significantly correlated with MPO activity (r = ?0.417, P = 0.003) and MDA levels (r = ?0.532, P = 0.007). The serum MDA levels were also found to be significantly correlated with MPO activity (r = 0.419, P = 0.003).

Conclusions

We concluded that serum MPO activity and oxidative stress were increased and that serum catalase activity was decreased in patients with adult nephrotic syndrome. In addition, these results indicate that increased MPO activity is associated with an oxidant–antioxidant imbalance that may contribute to atherosclerosis in patients with adult nephrotic syndrome.  相似文献   
32.
Alterations of endothelial cells and the vasculature play a central role in the pathogenesis of a broad spectrum of the most dreadful of human diseases, as endothelial cells have the key function of participating in the maintenance of patent and functional capillaries. The endothelium is directly involved in peripheral vascular disease, stroke, heart disease, diabetes, insulin resistance, chronic kidney failure, tumor growth, metastasis, venous thrombosis, and severe viral infectious diseases. Dysfunction of the vascular endothelium is thus a hallmark of human diseases. In this review the main endothelial abnormalities found in various human diseases such as cancer, diabetes mellitus, atherosclerosis, and viral infections are addressed.  相似文献   
33.
34.
35.

Background

Diabetes is a growing worldwide problem that is strongly associated with atherosclerosis. Screening and intervention for diabetes in the earliest stages are advocated for the prevention of diabetic complications and cardiovascular disease.

Scope of review

This review gives a background of and discusses the potential clinical utility of glycated albumin (GA) in diabetes.

Major conclusions

GA is a ketoamine formed via a non-enzymatic glycation reaction of serum albumin and it reflects mean glycemia over two to three weeks. GA can be used for patients with anemia or hemoglobinopathies for whom the clinically measured hemoglobin A1c level may be inaccurate. Because both serum and plasma samples can be used, GA can be analyzed from the same samples as common biological markers. GA is a useful marker for the screening of diabetes in a medical evaluation. It can be also used to determine the effectiveness of treatment before initiating or changing medications for diabetic patients. GA is potentially an atherogenic protein in the development of diabetic atherosclerosis.

General significance

GA measurement is useful as part of a routine examination to screen for both diabetes and atherosclerosis. This article is part of a Special Issue entitled Serum Albumin.  相似文献   
36.
Dendritic cells (DCs) activate adaptive immune responses in atherosclerotic plaques; however, the origin of DCs is in question. We attempted to determine whether cholesterol or its oxide forms, which are detected in abundance in atheromatous lesions, could induce differentiation or transition of monocytic cells to DCs. Treatment of THP-1 cells with 27-hydroxycholesterol (27OH-Chol) and 7α-hydroxycholesterol (7αOH-Chol) resulted in an increase in the numbers of adherent cells, and, in contrast to PMA, decreased uptake of FITC-conjugated dextran. In addition, treatment with 27OH-Chol and 7αOH-Chol induced expression of mDC-specific molecules, including CD40, CD80, CD83, and CD88. Of the two oxysterols, 27OH-Chol enhanced expression of MHC class I and II molecules as well as CCR7. However, treatment with an identical concentration of cholesterol and 7-ketocholesterol did not influence adherence, uptake of FITC-conjugated dextran, and expression of the aforementioned molecules. This is the first study to report on change of monocytic cells by oxysterols to phenotypically atypical cells with some characteristics of mDCs detected in atherosclerotic lesions. We propose that a certain type of oxysterol would contribute to immune responses in atherosclerotic lesions by enhancing expression of multiple CD molecules as well as MHC molecules by monocytic cells.  相似文献   
37.
Prolonged exposure to oxidized low density lipoprotein (oxLDL) can alter various aspects of cell biology, including modification of vasomotor responses and downregulation of calcium channel proteins in aortic smooth muscle cells. However, the components of oxLDL responsible for these effects have not been fully elucidated. The study reported here aimed at examining the consequences of extended exposure to oxysterols, cholesterol oxidation products whose levels are elevated in oxLDL as compared to unmodified LDL, on calcium signalling mechanisms in A7r5 cells, a model aortic smooth muscle cell-line. Within 24 h of exposure, all three oxysterol congeners tested caused an elevation in the resting cytoplasmic Ca2+ concentration. These oxysterols also inhibited Ca2+ transients in response to arginine vasopressin and bradykinin, and some but not all congeners ablated Ca2+ signals triggered by platelet activating factor, the ryanodine receptor calcium channel agonist 4-choloro-meta-cresol, or thapsigargin, an inhibitor of endoplasmic reticulum Ca2+ uptake. The effects of long-term exposure to the oxysterol congener 7β-hydroxycholesterol on arginine vasopressin stimulated Ca2+ signals were mainly at the level of Ca2+ release from intracellular stores rather than on Ca2+ influx mechanisms. Of the calcium signalling proteins tested, only the type 1 ryanodine receptor and the type 1 inositol 1,4,5-trisphosphate receptor (IP3R1) were significantly downregulated by 24 h exposure to oxysterols. Decreases in IP3R1 protein triggered by 7β-hydroxycholesterol were both time and concentration dependent, occurring over a concentration range encountered within atherosclerotic lesions. IP3R1 downregulation by certain oxysterols is mediated by proteasomal proteolysis, since it can be abolished by co-incubation with epoxomicin. Overall, these data demonstrate that major oxysterol components of oxLDL cause long-term alterations in Ca2+ signalling in a model aortic smooth muscle cell. Such effects could contribute to the pathology of atherosclerotic disease.  相似文献   
38.

Background

Atherosclerosis is associated with macrophage accumulation. LOX-1 has been shown to induce macrophage attachment, and its deletion (LOX-1 knockout, KO) reduces atherosclerosis in LDLr KO mice fed a high cholesterol diet. We examined differences in macrophage trafficking in age-matched wild type, LOX-1 KO, LDLr KO, and LDLr/LOX-1 double KO mice.

Methods

Sections of aortas of mice fed high cholesterol diet were collected at weeks 0, 4, 8, 12 and 19 and analyzed by immunohistochemistry and flow cytometry.

Results

In the LDLr KO mice aorta, CD68 positivity (macrophage accumulation) increased over time up to 12 weeks, and then the accumulation fell modestly but significantly. The periaortal fat and adventitia showed more CD68 positivity than the media and intima. This pattern was also evident in the non-atherosclerotic areas. Importantly, LOX-1 KO and LDLr–LOX-1 double KO mice showed diminished CD68 positivity in comparison to wild type and LDLR KO mice, respectively. Further, macrophages from LOX-1 KO mice revealed a marked reduction in migration (vs. macrophages from wild type mice) in in vitro migration assay.

Conclusions

LOX-1 deletion translates into reduction in macrophage trafficking in the aorta of LDLr KO mice. Most of the macrophage trafficking appears in the subadventitial regions.  相似文献   
39.
《Free radical research》2013,47(7):821-829
Abstract

Oxidative stress contributes to lipid peroxidation and decreases nitric oxide (NO) bioavailability in atherosclerosis. While long-chain (n-3) polyunsaturated fatty acids (PUFA) are easily oxidized in vitro, they improve endothelial function. Hence, this study postulates that long-chain (n-3) PUFA decrease atherogenic oxidative stress in vivo. To test this, apoE–/– mice were fed a corn oil- or a fish oil (FO)-rich diet for 8, 14 or 20 weeks and parameters related to NO and superoxide (O2.–) plus markers of lipid peroxidation and protein oxidative damage in the aortic root were evaluated. The FO-rich diet increased NO production and endothelial NO synthase (NOS) expression and lowered inducible NOS, p22phox expression and O2.–production after 14 and 20 weeks of diet. Protein lipoxidative damage (including 4-hydroxynonenal) was decreased after a long-term FO-diet. This supports the hypothesis that a FO-rich diet could counteract atherogenic oxidative stress, showing beneficial effects of long-chain (n-3) PUFA.  相似文献   
40.
Abstract

The present study examined the cellular functions of low-molecular-weight protein tyrosine phosphatase (LMW-PTP), which consists of two active isoforms IF-1 and IF-2, in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), focusing on cell growth and migration. We transduced recombinant IF-1 and IF-2, and ribozyme targeting both isoforms using an adenovirus vector in these cells. We detected the expression of IF-1 and IF-2 in both types of cells. IF-1 as well as IF-2 inhibited PDGF-induced DNA synthesis and migration in VSMCs. In contrast, both isoforms enhanced lysophosphatidic acid-stimulated cell migration without change in DNA synthesis in ECs. Whereas there is a report indicating that reactive oxygen species-dependent inactivation of LMW-PTP regulates actin cytoskeleton reorganization during cell spreading and migration, the isoforms conversely suppressed the PDGF-induced H2O2 generation with subsequent decrease in the p38 activity in VSMCs. Catalytically inactive LMW-PTP exerted the opposite and similar effects to the wild type in ECs and in VSMCs, respectively, suggesting that substrates for the phosphatase differ between these cells. Moreover, high concentrations of glucose suppressed the expression of LMW-PTP in both cells. These data suggest that LMW-PTP negatively regulates the pathogenesis of atherosclerosis and that glucose-dependent suppression of LMW-PTP expression may promote the development of atherosclerosis in diabetics.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号