首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1694篇
  免费   71篇
  国内免费   107篇
  2023年   18篇
  2022年   30篇
  2021年   55篇
  2020年   54篇
  2019年   86篇
  2018年   54篇
  2017年   87篇
  2016年   75篇
  2015年   67篇
  2014年   136篇
  2013年   125篇
  2012年   106篇
  2011年   170篇
  2010年   104篇
  2009年   128篇
  2008年   121篇
  2007年   91篇
  2006年   104篇
  2005年   68篇
  2004年   50篇
  2003年   33篇
  2002年   32篇
  2001年   12篇
  2000年   7篇
  1999年   6篇
  1998年   8篇
  1997年   11篇
  1996年   4篇
  1995年   3篇
  1994年   10篇
  1993年   4篇
  1992年   4篇
  1991年   2篇
  1990年   2篇
  1989年   1篇
  1987年   3篇
  1984年   1篇
排序方式: 共有1872条查询结果,搜索用时 31 毫秒
31.
Abstract

We have conducted a thorough study on extracellular biosynthesis of silver nanoparticles (AgNPs) by a halotolerant bacterium Bacillus endophyticus SCU-L, which was identified by 16S rRNA gene sequencing analysis. This strain was selected during an ongoing research programme aimed at finding a novel biological method for green nanosynthetic routes using the extremophiles in unexplored hypersaline habitats. The biosynthesized AgNPs were characterized and analyzed with UV–vis spectroscopy, Fourier transform infrared spectroscopy, transmission electron microscopy, atomic force microscopy and X-ray diffraction. Further, the AgNPs were found to be spherical in shape with an average particle size of about 5.1?nm, and it was stable in aqueous solution for three months period of storage at room temperature under dark condition. Also, the synthesized AgNPs significantly presented antimicrobial activity against Candida albicans, Escherichia coli, Salmonella typhi and Staphylococcus aureus. The above results suggested that the present work may provide a valuable reference and theoretical basis for further exploration on microbial biosynthesis of AgNPs by halotolerant bacteria.  相似文献   
32.
A novel series of complexes of the type [M(C36H22N6)X]X2, where M = Cr(III), Mn(III), Fe(III); X = Cl?, NO3?, CH3COO?; and (C36H22N6) corresponds to the tetradentate macrocyclic ligand, have been synthesized by condensation of 1,8-diaminonaphthalene and isatin in the presence of trivalent metal salts in methanolic medium. The complexes have been characterized by elemental analysis, conductance and magnetic measurements, and UV/Vis, IR, and mass spectroscopy. On the basis of these studies, a five coordinate square pyramidal geometry for all of these complexes is proposed. All synthesized macrocyclic complexes have been tested for in vitro antimicrobial activities against some pathogenic bacterial strains, viz. Staphylococcus aureus, Bacillus subtilis (Gram-positive), Escherichia coli, Pseudomonas aeruginosa (Gram-negative), and two fungal strains, viz. Aspergillus niger, Aspergillus flavus. The MICs shown by the complexes against these microbial strains have been compared with MICs shown by standard antibiotic ciprofloxacin and the antifungal drug amphotericin-B.  相似文献   
33.
Abstract

Three mononuclear, mixed ligand ternary Cu(II) complexes of 3-((Z)-1-(2-hydroxyphenylimino)ethyl)-4-hydroxy-6-methyl-2H-pyran-2-one (HEHMP) viz; [Cu-(Phen) (HEHMP)] (1a), [Cu-(Bpy)(HEHMP)] (1?b) and [Cu-Bpy(NCS)(HEHMP)] (1c) were synthesized and characterized by data obtained from various spectral techniques. The binding affinities of these complexes with calf thymus DNA (CT-DNA) and bovine serum albumin (BSA) protein were explored by absorption and fluorescence quenching titrations. The results indicated strong affinity of the title compounds to bind with both CT-DNA and BSA. The antioxidant properties of the synthesized compounds evaluated by free-radical scavenging method using spectrophotometric technique indicated their affirmative potential activity. Gel electrophoresis experiments revealed the efficacy of metal complexes in resulting the cleavage of pBR322 supercoiled DNA. In vitro cytotoxicity studies of these complexes evaluated by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay against HeLa and MCF-7 cancer cell lines indicated relatively high effectiveness of the complex 1c. Confocal microscopy signified the potential of the complexes to induce apoptosis in HeLa cell lines. In addition, the antibacterial activity of the compounds carried out by disc diffusion method revealed significantly enhanced antibacterial activity in Cu (II) ternary complexes compared to the activity of ligands in unbound form signifying the implicit role of metal ion in inducing lipophilic character.  相似文献   
34.
Synthetic routes toward the synthesis of some novel 1-(2,3,4-tri-O-acetyl-α-l-arabinopyranosyl)-azetidin-2-ones are described. Antimicrobial screening of three selected compounds revealed their activity against Bacillus subtilis and Escherichia coli.  相似文献   
35.
Glucosidation of the new 8‐amino‐6‐benzyl(or substituted benzyl)‐2,8‐dihydro‐1,2,4‐triazolo[4,3‐b][1,2,4]triazin‐7(3H)‐ones (3a–d) with 2,3,4,6‐tetra‐O‐acetyl‐α‐d‐glucopyranosyl bromide 4 gave the corresponding N‐glucosides 5a–d. Chemical transformations leading to new functionalities have also been achieved to give compounds 7–12. Antimicrobial activity of compounds 5a–c against Aspergillus fumigatus, Penicillium italicum, Syncephalastrum racemosum, Candida albicans, Staphylococcus aureus, Pseudomonas aeruginosa, Bacillus subtilis, Escherichia coli is described.  相似文献   
36.
Lipopolysaccharide (LPS), also known as endotoxin, is the primary trigger of sepsis, which is associated with high mortality in patients. No therapeutic agents are currently efficacious enough to protect patients from sepsis characterized by LPS-mediated tissue damage and organ failure. Previously, a phosvitin-derived peptide, Pt5, which consists of the C-terminal 55 residues of zebrafish phosvitin, has been shown to function as an antibacterial agent. In this study, we have generated six mutants by site-directed mutagenesis based on the sequence of Pt5, and found that one of the six mutants, Pt5e, showed the strongest bactericidal activities against Escherichia coli and Staphylococcus aureus. We then demonstrated that Pt5e was able to bind to LPS and lipoteichoic acid (LTA). More importantly, we showed that Pt5e significantly inhibited LPS-induced tumor-necrosis factor (TNF)-α and interleukin (IL)-1β release from murine RAW264.7 cells and considerably reduced serum TNF-α and IL-1β levels in mice. Additionally, Pt5e protected the liver from damage by LPS, and remarkably promoted the survival rate of the endotoxemia mice. Furthermore, Pt5e displayed no cytotoxicity to murine RAW264.7 macrophages and no hemolytic activity toward human red blood cells. These data together indicate that Pt5e is an endotoxin-neutralizing agent with a therapeutic potential in clinical treatment of LPS-induced sepsis.  相似文献   
37.
A green, simple, and effective approach was performed to synthesize potent silver nanoparticles (SNPs) using bacterial exopolysaccharide as both a reducing and stabilizing agent. The synthesized SNPs were characterized using UV-vis spectroscopy, transmission electron microscopy, energy dispersive X-ray analysis, X-ray diffraction, and Fourier-transform-infrared spectra analyses. The SNPs varied in shape and were multidispersed with a mean diameter of 10 nm ranging from 2 to 15 nm and were stable up to 2 months at room temperature. The antimicrobial activity of the SNPs was analyzed against bacterial and fungal pathogens using the agar well diffusion method. Dose dependent inhibition was observed for all bacterial pathogens. The multidrug resistant pathogens P. aeruginosa and K. pneumonia were found to be more susceptible to the SNPs than the food borne pathogen L. monocytogenes. The fungi Aspergillus spp. exhibited a maximum zone of inhibition compared to that of Penicillum spp. These results suggest that exopolysaccharide-stabilized SNPs can be used as an antimicrobial agent for various biomedical applications.  相似文献   
38.
The essential oil obtained by hydrodistillation from the aerial parts of Aristolochia delavayi Franch. (Aristolochiaceae), a unique edible aromatic plant consumed by the Nakhi (Naxi) people in Yunnan, China, was investigated using GC/MS analysis. In total, 95 components, representing more than 95% of the oil composition, were identified, and the main constituents found were (E)‐dec‐2‐enal (52.0%), (E)‐dodec‐2‐enal (6.8%), dodecanal (3.35%), heptanal (2.88%), and decanal (2.63%). The essential oil showed strong inhibitory activity (96% reduction) of the production of bacterial volatile sulfide compounds (VSC) by Klebsiella pneumoniae, an effect that was comparable with that of the reference compound citral (91% reduction). Moreover, the antimicrobial activity of the essential oil and the isolated major compound against eight bacterial and six fungal strains were evaluated. The essential oil showed significant antibacterial activity against Providencia stuartii and Escherichia coli, with minimal inhibitory concentrations (MIC) ranging from 3.9 to 62.5 μg/ml. The oil also showed strong inhibitory activity against the fungal strains Trichophyton ajelloi, Trichophyton terrestre, Candida glabrata, Candida guilliermondii, and Cryptococcus neoformans, with MIC values ranging from 3.9 to 31.25 μg/ml, while (E)‐dec‐2‐enal presented a lower antifungal activity than the essential oil.  相似文献   
39.
Temporins are a family of short antimicrobial peptides (8–17 residues) that mostly show potent activity against Gram-positive bacteria. Herein, we demonstrate that temporin-SHd, a 17-residue peptide with a net charge of +2 (FLPAALAGIGGILGKLFamide), expressed a broad spectrum of antimicrobial activity. This peptide displayed potent antibacterial activities against Gram-negative and Gram-positive bacteria, including multi-drug resistant Staphylococcus aureus strains, as well as antiparasitic activity against promastigote and the intracellular stage (amastigote) of Leishmania infantum, at concentration not toxic for the macrophages. Temporin-SHd that is structured in a non-amphipathic α-helix in anionic membrane-mimetic environments, strongly and selectively perturbs anionic bilayer membranes by interacting with the polar head groups and acyl region of the phospholipids, with formation of regions of two coexisting phases: one phase rich in peptide and the other lipid-rich. The disruption of lipid packing within the bilayer may lead to the formation of transient pores and membrane permeation/disruption once a threshold peptide accumulation is reached. To our knowledge, Temporin-SHd represents the first known 17-residue long temporin expressing such broad spectrum of antimicrobial activity including members of the trypanosomatidae family. Additionally, since only a few shorter members (13 residues) of the temporin family are known to display antileishmanial activity (temporins-TA, -TB and -SHa), SHd is an interesting tool to analyze the antiparasitic mechanism of action of temporins.  相似文献   
40.
Abstract

Microorganisms synthesize intracellular, structural and extracellular polymers also referred to as biopolymers for their function and survival. These biopolymers play specific roles as energy reserve materials, protective agents, aid in cell functioning, the establishment of symbiosis, osmotic adaptation and support the microbial genera to function, adapt, multiply and survive efficiently under changing environmental conditions. Viscosifying, gelling and film forming properties of these have been exploited for specific significant applications in food and allied industries. Intensive research activities and recent achievements in relevant and important research fields of global interest regarding film forming microbial biopolymers is the subject of this review. Microbial polymers such as pullulan, kefiran, bacterial cellulose (BC), gellan and levan are placed under the category of exopolysaccharides (EPS) and have several other functional properties including film formation, which can be used for various applications in food and allied industries. In addition to EPS, innumerable bacterial genera are found to synthesis carbon energy reserves in their cells known as polyhydroxyalkanoates (PHAs), microbial polyesters, which can be extruded into films with excellent moisture and oxygen barrier properties. Blow moldable biopolymers like PHA along with polylactic acid (PLA) synthesized chemically in vitro using lactic acid (LA), which is produced by LA bacteria through fermentation, are projected as biodegradable polymers of the future for packaging applications. Designing and creating of new property based on requirements through controlled synthesis can lead to improvement in properties of existing polysaccharides and create novel biopolymers of great commercial interest and value for wider applications. Incorporation of antimicrobials such as bacteriocins or silver and copper nanoparticles can enhance the functionality of polymer films especially in food packaging applications either in the form of coatings or wrappings. Use of EPS in combinations to obtain desired properties can be evaluated to increase the application range. Controlled release of active compounds, bioactive protection and resistance to water can be investigated while developing new technologies to improve the film properties of active packaging and coatings. An holistic approach may be adopted in developing an economical and biodegradable packaging material with acceptable properties. An interdisciplinary approach with new innovations can lead to the development of new composites of these biopolymers to enhance the application range. This current review focuses on linking and consolidation of recent research activities on the production and applications of film forming microbial polymers like EPS, PHA and PLA for commercial applications.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号