首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   86篇
  免费   21篇
  国内免费   19篇
  2023年   3篇
  2022年   2篇
  2021年   4篇
  2020年   14篇
  2019年   4篇
  2018年   12篇
  2017年   8篇
  2016年   6篇
  2015年   7篇
  2014年   5篇
  2013年   12篇
  2012年   5篇
  2011年   2篇
  2010年   4篇
  2009年   1篇
  2008年   6篇
  2007年   5篇
  2006年   3篇
  2005年   3篇
  2004年   4篇
  2003年   3篇
  2002年   4篇
  2001年   1篇
  2000年   3篇
  1999年   1篇
  1998年   3篇
  1993年   1篇
排序方式: 共有126条查询结果,搜索用时 31 毫秒
21.
The ongoing climatic changes potentially affect plant growth and the functioning of temperature‐limited high‐altitude and high‐latitude ecosystems; the rate and magnitude of these biotic changes are, however, uncertain. The aim of this study was to reconstruct stand structure and growth forms of Larix sibirica (Ledeb.) in undisturbed forest–tundra ecotones of the remote Polar Urals on a centennial time scale. Comparisons of the current ecotone with historic photographs from the 1960s clearly document that forests have significantly expanded since then. Similarly, the analysis of forest age structure based on more than 300 trees sampled along three altitudinal gradients reaching from forests in the valleys to the tundra indicate that more than 70% of the currently upright‐growing trees are <80 years old. Because thousands of more than 500‐year‐old subfossil trees occur in the same area but tree remnants of the 15–19th century are lacking almost entirely, we conclude that the forest has been expanding upwards into the formerly tree‐free tundra during the last century by about 20–60 m in altitude. This upward shift of forests was accompanied by significant changes in tree growth forms: while 36% of the few trees that are more than 100 years old were multi‐stem tree clusters, 90% of the trees emerging after 1950 were single‐stemmed. Tree‐ring analysis of horizontal and vertical stems of multi‐stemmed larch trees showed that these trees had been growing in a creeping form since the 15th century. In the early 20th century, they started to grow upright with 5–20 stems per tree individual. The incipient vertical growth led to an abrupt tripling in radial growth and thus, in biomass production. Based on above‐ and belowground biomass measurements of 33 trees that were dug out and the mapping of tree height and diameter, we estimated that forest expansion led to a biomass increase by 40–75 t ha?1 and a carbon accumulation of approximately 20–40 g C m?2 yr?1 during the last century. The forest expansion and change in growth forms coincided with significant summer warming by 0.9 °C and a doubling of winter precipitation during the 20th century. In summary, our results indicate that the ongoing climatic changes are already leaving a fingerprint on the appearance, structure, and productivity of the treeline ecotone in the Polar Urals.  相似文献   
22.
The Russian treeline is a dynamic ecotone typified by steep gradients in summer temperature and regionally variable gradients in albedo and heat flux. The location of the treeline is largely controlled by summer temperatures and growing season length. Temperatures have responded strongly to twentieth-century global warming and will display a magnified response to future warming. Dendroecological studies indicate enhanced conifer recruitment during the twentieth century. However, conifers have not yet recolonized many areas where trees were present during the Medieval Warm period (ca AD 800-1,300) or the Holocene Thermal Maximum (HTM; ca 10,000-3,000 years ago). Reconstruction of tree distributions during the HTM suggests that the future position of the treeline due to global warming may approximate its former Holocene maximum position. An increased dominance of evergreen tree species in the northern Siberian forests may be an important difference between past and future conditions. Based on the slow rates of treeline expansion observed during the twentieth century, the presence of steep climatic gradients associated with the current Arctic coastline and the prevalence of organic soils, it is possible that rates of treeline expansion will be regionally variable and transient forest communities with species abundances different from today's may develop.  相似文献   
23.
芦芽山林线白杄生长季径向生长动态   总被引:6,自引:0,他引:6       下载免费PDF全文
高山林线作为树木分布的高度上限, 是全球范围最重要的植被过渡带之一, 其树木生长显著受到外界极端环境条件的影响。利用点状树木径向变化记录仪于2009年5-9月, 对山西省芦芽山林线组成树种白杄(Picea meyeri)生长季内树木径向生长进行了持续的动态监测。结果表明: 白杄茎干日变化主要受到树木蒸腾作用日变化的影响, 茎干呈现出白天脱水收缩与夜间吸水膨胀的循环变化; 生长季白杄径向生长可划分为3个不同的生长时段: 1)茎干水分恢复时段, 2)茎干快速生长时段, 3)茎干脱水收缩时段。在茎干水分恢复时段, 白杄茎干径向累积变化主要受到土壤含水量变化的影响。土壤温度是茎干快速生长时段影响茎干径向生长的主导环境因子, 同时它也影响着白杄茎干径向生长的开始。在茎干脱水收缩时段, 土壤温度、土壤含水量是影响茎干径向累积变化的主要环境因子。白杄径向生长最大速度出现在6月末, 其主要受到光周期(即白昼长短)影响, 是对林线处极端环境的一种适应。  相似文献   
24.
Paludification and Forest Retreat in Northern Oceanic Environments   总被引:5,自引:1,他引:4  
Examination of temperature variations over the past centuryfor Europe and the Arctic from northern Norway to Siberia suggeststhat variations in the North Atlantic Oscillation are associatedwith an increase in oceanicity in certain maritime regions.A southward depression of the treeline in favour of wet heaths,bogs and wetland tundra communities is also observed in northernoceanic environments. The physiological basis for this changein ecological succession from forest to bog is discussed inrelation to the long-term effects of flooding on tree survival.The heightened values currently detected in the North AtlanticOscillation Index, together with rising winter temperatures,and increased rainfall in many areas in northern Europe, presentsan increasing risk of paludification with adverse consequencesfor forest regeneration, particularly in areas with oceanicclimates. Climatic warming in oceanic areas may increase thearea covered by bogs and, contrary to general expectations,lead to a retreat rather than an advance in the northern limitof the boreal forest. High water-table levels are not automaticallydetrimental to forest survival as can be seen in swamp, bottomlandand mangrove forests. Consequently, the inhibitory effects offlooding on tree survival and regeneration in northern regionsshould not be uncritically accepted as merely due to high waterlevels. Evidence is discussed which suggests that physiologicaland ecological factors may interact to inhibit forest regenerationin habitats where there is a risk of prolonged winter-floodingcombined with warmer winters and cool moist summers.  相似文献   
25.
In response to climate warming, subalpine treelines are expected to move up in elevation since treelines are generally controlled by growing season temperature. Where treeline is advancing, dispersal differences and early life stage environmental tolerances are likely to affect how species expand their ranges. Species with an establishment advantage will colonize newly available habitat first, potentially excluding species that have slower establishment rates. Using a network of plots across five mountain ranges, we described patterns of upslope elevational range shift for the two dominant Great Basin subalpine species, limber pine and Great Basin bristlecone pine. We found that the Great Basin treeline for these species is expanding upslope with a mean vertical elevation shift of 19.1 m since 1950, which is lower than what we might expect based on temperature increases alone. The largest advances were on limber pine‐dominated granitic soils, on west aspects, and at lower latitudes. Bristlecone pine juveniles establishing above treeline share some environmental associations with bristlecone adults. Limber pine above‐treeline juveniles, in contrast, are prevalent across environmental conditions and share few environmental associations with limber pine adults. Strikingly, limber pine is establishing above treeline throughout the region without regard to site characteristic such as soil type, slope, aspect, or soil texture. Although limber pine is often rare at treeline where it coexists with bristlecone pine, limber pine juveniles dominate above treeline even on calcareous soils that are core bristlecone pine habitat. Limber pine is successfully “leap‐frogging” over bristlecone pine, probably because of its strong dispersal advantage and broader tolerances for establishment. This early‐stage dominance indicates the potential for the species composition of treeline to change in response to climate change. More broadly, it shows how species differences in dispersal and establishment may result in future communities with very different specific composition.  相似文献   
26.
Diatom assemblages and limnological data were analyzed from 74 lakes spanning arctic treeline in three geographical regions of northern Russia: near the mouth of the Pechora River, on the Taimyr Peninsula, and near the mouth of the Lena River. Analysis of similarities indicated that diatom assemblages in tundra and forest lakes were significantly different from each other in all regions, with tundra lakes generally associated with higher abundances of small benthic Fragilaria Lyngbye taxa. Canonical correspondence analysis identified variables related to ion concentrations (e.g. Na + , dissolved inorganic carbon), lake depth, silica concentrations, and surface water temperatures as factors that explained significant amounts of variation in the diatom assemblages. Across treeline, the generally higher surface water temperatures of the forested lakes consistently accounted for a significant proportion of the diatom distribution patterns. Major ion concentrations also explained significant amounts of variation in the diatom assemblages across treeline for all three regions; however, regional trends were most likely influenced by local factors (i.e. ocean proximity or anthropogenic activities). The importance of climatic gradients across treeline (e.g. temperature) diatom distributions provides additional evidence that diatoms may be useful as paleoclimatic indicators. However, combination of the three calibration sets revealed that local water chemistry determinants (e.g. lithology, marine influence) overrode the influence of climatic gradients in explaining diatom distributions, suggesting that regional differences must be minimized for successful combination of geographically separate calibration sets.  相似文献   
27.
The sensitivity and response of northern hemisphere altitudinal and polar treelines to environmental change are increasingly discussed in terms of climate change, often forgetting that climate is only one aspect of environmental variation. As treeline heterogeneity increases from global to regional and smaller scales, assessment of treeline sensitivity at the landscape and local scales requires a more complex approach than at the global scale. The time scale (short‐, medium‐, long‐term) also plays an important role when considering treeline sensitivity. The sensitivity of the treeline to a changing environment varies among different types of treeline. Treelines controlled mainly by orographic influences are not very susceptible to the effects of warming climates. Greatest sensitivity can be expected in anthropogenic treelines after the cessation of human activity. However, tree invasion into former forested areas above the anthropogenic forest limit is controlled by site conditions, and in particular, by microclimates and soils. Apart from changes in tree physiognomy, the spontaneous advance of young growth of forest‐forming tree species into present treeless areas within the treeline ecotone and beyond the tree limit is considered to be the best indicator of treeline sensitivity to environmental change. The sensitivity of climatic treelines to climate warming varies both in the local and regional topographical conditions. Furthermore, treeline history and its after‐effects also play an important role. The sensitivity of treelines to changes in given factors (e.g. winter snow pack, soil moisture, temperature, evaporation, etc.) may vary among areas with differing climatic characteristics. In general, forest will not advance in a closed front but will follow sites that became more favourable to tree establishment under the changed climatic conditions.  相似文献   
28.
29.
高山林线形成机理研究进展   总被引:1,自引:0,他引:1  
高山林线是郁闭森林与高山植被之间的分布界限,作为重要的生态过渡带,对全球和区域性气候变化的反应极为敏感,被认为是气候变化的理想监测器.高山林线研究从最初的形态描述到林线成因假说都是为了寻找高山林线形成的原因.迄今出现的高山林线成因假说都能够在局地尺度解释高山林线成因,但仍然缺乏可以普遍解释全球高山林线现象的假说.温度是林线分布的限制因子,低温限制了林线树种的生存及生长,但是低温影响了哪一个生化过程仍不明确,其影响机理还需进一步探讨.本文对高山林线形成机理,特别是对低温对高山林线植物光合特性、养分特征、非结构性碳水化合物和抗氧化系统的影响等研究进展进行综述,并提出了未来林线研究应该关注的问题.  相似文献   
30.
Tree-ring research in the Altai-Sayan Mountains so far only considered a limited number of well-replicated site chronologies. The dendroecological and palaeoclimatological potential and limitations of large parts of south-central Russia therefore remain rather unexplored. Here, we present a newly updated network of 13 larch (Larix sibirica Ldb.) tree-ring width (TRW) chronologies from mid to higher elevations along a nearly 1000 km west-to-east transect across the greater Altai-Sayan region. All data were sampled between 2009 and 2014. The corresponding site chronologies cover periods from 440 to 860 years. The highest TRW agreement is found between chronologies ≥2200 m asl, whereas the material from lower elevations reveals overall less synchronized interannual to longer-term growth variability. While fluctuations in average June–July temperature predominantly contribute to the growth at higher elevations, arid air masses from Mongolia mainly affect TRW formation at lower elevations. Our results are indicative for the dendroclimatological potential of the Altai-Sayan Mountains, where both, variation in summer temperature and hydroclimate can be robustly reconstructed back in time. These findings are valid for a huge region in central Asia where reliable meteorological observations are spatially scarce and temporally restricted to the second half of the 20th century. The development of new high-resolution climate reconstruction over several centuries to millennia will further appear beneficial for timely endeavors at the interface of archaeology, climatology and history.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号