首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   4篇
  国内免费   4篇
  2016年   1篇
  2013年   3篇
  2012年   1篇
  2011年   1篇
  2010年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   4篇
  2002年   1篇
  2001年   2篇
  2000年   1篇
  1999年   1篇
  1997年   1篇
  1995年   1篇
  1993年   1篇
  1992年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1975年   1篇
排序方式: 共有29条查询结果,搜索用时 343 毫秒
21.
We demonstrate a facile blue native polyacrylamide gel electrophoresis (BN-PAGE) technique to detect two malate-generating enzymes, namely fumarase (FUM), malate synthase (MS) and four oxaloacetate-forming enzymes, namely pyruvate carboxylase (PC), phosphoenolpyruvate carboxykinase (PEPCK), citrate lyase (CL) and aspartate aminotransferase (AST). Malate dehydrogenase (MDH) was utilized as a coupling enzyme to detect either malate or oxaloacetate in the presence of their respective substrates and cofactors. The latter four oxaloacetate-forming enzymes were identified by 2,6-dichloroindophenol (DCIP) and p-iodonitrotetrazolium (INT) while the former two malate-producing enzymes were visualized by INT and phenazine methosulfate (PMS) in the reaction mixtures, respectively. The band formed at the site of enzymatic activity was easily quantified, while Coomassie staining provided information on the protein concentration. Hence, the expression and the activity of these enzymes can be readily evaluated. A two-dimensional (2D) BN-PAGE or SDS-PAGE enabled the rapid purification of the enzyme of interest. This technique also provides a quick and inexpensive means of quantifying these enzymatic activities in normal and stressed biological systems.  相似文献   
22.
利用Modeller7v7软件对米根霉(Rhizopus oryzoe)富马酸酶(fumarase)进行了三级结构的同源建模并对结果的空间和能量上的合理性进行了验证,进一步对酶的结构域和催化活性位点进行了研究。结果表明:富马酸酶由三个结构域组成,中心区域为一个由五个几乎平行的α螺旋组成的独特的束型结构,其催化活性位点是由三个亚基上的氨基酸相互靠近共同组成的。为以后有针对性的进行富马酸酶的定点突变提高富马酸产量提供分子水平上的理论指导。  相似文献   
23.
In comparative study of respiratory metabolism, it was established that the relative proportions of respiratory end-products (succinic, acetic and lactic acids) differed consistently in two strains of Hymenolepis diminuta (Toronto and ANU). The ANU strain produced more lactic acid and less succinic acid under aerobic and anaerobic conditions. In the shift from aerobic to anaerobic conditions both strains compensated by increasing their outputs of succinic acid. The ANU strain possessed significantly higher activities of hexokinase, pyruvate kinase, lactate dehydrogenase, cytosolic and mitochondrial malic enzyme and cytosolic α-glycerophosphate dehy drogenase. The Toronto strain had significantly higher activities of fumarase, succinate dehydrogenase, and fumarate reductase. There were no significant differences in the activities of phosphoenolpyruvate carboxykinase and malic dehydrogenase between strains. The fumarase activity in the Toronto strain was 16 times that of the ANU strain, its Km (malate) was 0.8mM, as opposed to 2.5 mM, and it was less sensitive to inhibition by NAD or ATP. These observations are consistent with the patterns of end-product formation in the two strains. Ratios of end-products and calculations of approximate redox balance suggest that the Toronto strain may have a greater capacity for aerobic metabolism.  相似文献   
24.
The nucleotide sequence of a 1.46 kb cDNA, selected from a human liver library by the expression of fumarase antigenic determinants, was determined using the dideoxy chain termination method. The cDNA contained an open reading frame extending from the extreme 5-base and coding for a protein with 468 amino acids. This protein, with the exception of an N-terminal methionine, was identified as mitochondrial fumarase. The protein showed a high degree of identity of structure with the fumarase fromBacillus subtilis (56.6 %) and a fumarase fromEscherichia coli (product of thefumC gene, 59.3 %), and a lower degree of identity with the aspartase ofE. coli (37.2 %).  相似文献   
25.
The condition for the minimum overall reactor volume of a given number of CSTR's in series is theoretically determined for a reversible, single reactant-single product (Uni-Uni) enzyme catalyzed reaction. The reactor network is assumed to operate in steady-state, isothermal conditions with a single phase and a constant activity of biocatalyst. The method is based on a mathematical analysis of the discrete substrate concentration profile along the CSTR's assuming complete micromixing. The algebraic equations describing the critical loci are obtained for the general case, the mathematical proof that these equations define a minimum is presented, and an exact solution arising from an asymptotic situation is found. An approximate analytical method of optimization based on the aforementioned critical behavior is reported and its validity and usefulness discussed. The formulae introduced can be used in more general situations as tools for getting the approximate range where the optimal overall volume of the series of CSTR's lies. Hence, the reasoning developed is important for the preliminary CSTR design and relevant in the initial steps of the more involved methods of numerical optimization. Finally, the enzymatic conversion of fumarate to L-malate is examined as a model system in order to assess the usefulness and applicability of the analysis developed.  相似文献   
26.
Abstract: In Mesembryanthemum crystallinum plants, treated for 9 days with 0.4 M NaCl at low light intensities (80 - 90 or 95 - 100 μE m-2 s-1; λ = 400 - 700 nm), no day/night malate level differences (Δmalate) were detected. At high light (385 - 400 μE m-2 s-1) strong stimulation of PEPC activity, accompanied by a Δmalate of 11.3 mM, demonstrated the presence of CAM metabolism. This indicates that, to evolve day/night differences in malate concentration, high light is required. Salt treatment at low light induces and increases the activity of NAD- and NADP-malic enzymes by as much as 3.7- and 3.9-fold, while at high light these values reach 6.4- and 17.7-fold, respectively. The induction of activity of both malic enzymes and PEPC (phospo enol pyruvate carboxylase) take place before Δmalate is detectable. An increase in SOD (superoxide dismutase) was observed in plants cultivated at high light in both control and salt-treated plants. However, in salt-treated plants this effect was more pronounced. Carboxylating and decarboxylating enzymes seem to be induced by a combination of different signals, i.e., salt and light intensity. Plants performing CAM, after the decrease of activity of both the decarboxylating enzymes at the beginning of the light period, showed an increase in these enzymes in darkness when the malate pool reaches higher levels. In CAM plants the activity of fumarase (Krebs cycle) is much lower than that in C3 plants. The role of mitochondria in CAM plants is discussed.  相似文献   
27.
The effect in vivo of salt stress on the activated oxygen metabolism of mitochondria, was studied in leaves from two NaCl-treated cultivars of Pisum sativum L. with different sensitivity to NaCl. In mitochondria from NaCl-sensitive plants, salinity brought about a significant decrease of Mn-SOD (EC 1. 15. 1. 1) Cu, Zn-SOD I (EC 1. 15. 1. 1) and fumarase (EC 4. 2. 1. 2) activities. Conversely, in salt-tolerant plants NaCl treatment produced an increase in the mitochondrial Mn-SOD activity and, to a lesser extent, in fumarase activity. In mitochondria from both salt-treated cultivars, the internal H2O2 concentration remained unchanged. The NADH- and succinate-dependent generation of O2.−radicals by submitochondrial particles and the lipid peroxidation of mitochondrial membranes, increased as a result of salt treatment, and these changes were higher in NaCl-sensitive than in NaCl-tolerant plants. Accordingly, the enhanced rates of superoxide production by mitochondria from salt-sensitive plants were concomitant with a strong decrease in the mitochondrial Mn-SOD activity, whereas NaCl-tolerant plants appear to have a protection mechanism against salt-induced increased O2.− production by means of the induction of the mitochondrial Mn-SOD activity. These results indicate that in the subcellular toxicity of NaCl in pea plants, at the level of mitochondria, an oxidative stress mechanism mediated by superoxide radicals is involved, and also imply a function for mitochondrial Mn-SOD in the molecular mechanisms of plant tolerance to NaCl.  相似文献   
28.
响应面分析法用于微生物培养基浓度的优化   总被引:24,自引:4,他引:20  
首次将响应面分析法 (RSM )用于延胡索酸酶产生菌产氨短杆菌MA 2和黄色短杆菌MA 3培养基成份的优选 ,并且取得了良好的结果。经优化后产氨短杆菌MA 2酶活达 2 7.88×10 3 μmol/g·h ,黄色短杆菌MA 3酶活达 32 .2 6× 10 3 μmol/g·h ,较国内外文献报道的其它产氨短杆菌、黄色短杆菌单位菌体延胡索酸酶活力有显著提高。  相似文献   
29.
The Arabidopsis genome has two fumarase genes, one of which encodes a protein with mitochondrial targeting information (FUM1) while the other (FUM2) does not. We show that a FUM1–green fluorescent protein fusion is directed to mitochondria while FUM2–red fluorescent protein remains in the cytosol. While mitochondrial FUM1 is an essential gene, cytosolic FUM2 is not required for plant growth. However FUM2 is required for the massive accumulation of carbon into fumarate that occurs in Arabidopsis leaves during the day. In fum2 knock‐out mutants, fumarate levels remain low while malate increases, and these changes can be reversed with a FUM2 transgene. The fum2 mutant has lower levels of many amino acids in leaves during the day compared with the wild type, but higher levels at night, consistent with a link between fumarate and amino acid metabolism. To further test this relationship we grew plants in the absence or presence of nitrogen fertilizer. The amount of fumarate in leaves increased several fold in response to nitrogen in wild‐type plants, but not in fum2. Malate increased to a small extent in the wild type but to a greater extent in fum2. Growth of fum2 plants was similar to that of the wild type in low nitrogen but much slower in the presence of high nitrogen. Activities of key enzymes of nitrogen assimilation were similar in both genotypes. We conclude that FUM2 is required for the accumulation of fumarate in leaves, which is in turn required for rapid nitrogen assimilation and growth on high nitrogen.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号