首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   1317篇
  免费   218篇
  国内免费   133篇
  2023年   47篇
  2022年   17篇
  2021年   49篇
  2020年   59篇
  2019年   82篇
  2018年   76篇
  2017年   68篇
  2016年   65篇
  2015年   77篇
  2014年   61篇
  2013年   74篇
  2012年   56篇
  2011年   38篇
  2010年   43篇
  2009年   91篇
  2008年   79篇
  2007年   76篇
  2006年   69篇
  2005年   63篇
  2004年   56篇
  2003年   42篇
  2002年   35篇
  2001年   41篇
  2000年   47篇
  1999年   37篇
  1998年   38篇
  1997年   33篇
  1996年   16篇
  1995年   20篇
  1994年   18篇
  1993年   15篇
  1992年   12篇
  1991年   12篇
  1990年   15篇
  1989年   8篇
  1988年   11篇
  1987年   1篇
  1986年   4篇
  1985年   5篇
  1984年   2篇
  1983年   1篇
  1982年   4篇
  1980年   1篇
  1978年   1篇
  1976年   1篇
  1974年   1篇
  1958年   1篇
排序方式: 共有1668条查询结果,搜索用时 17 毫秒
21.
Accurate estimates of forest biomass stocks and fluxes are needed to quantify global carbon budgets and assess the response of forests to climate change. However, most forest inventories consider tree mortality as the only aboveground biomass (AGB) loss without accounting for losses via damage to living trees: branchfall, trunk breakage, and wood decay. Here, we use ~151,000 annual records of tree survival and structural completeness to compare AGB loss via damage to living trees to total AGB loss (mortality + damage) in seven tropical forests widely distributed across environmental conditions. We find that 42% (3.62 Mg ha−1 year−1; 95% confidence interval [CI] 2.36–5.25) of total AGB loss (8.72 Mg ha−1 year−1; CI 5.57–12.86) is due to damage to living trees. Total AGB loss was highly variable among forests, but these differences were mainly caused by site variability in damage-related AGB losses rather than by mortality-related AGB losses. We show that conventional forest inventories overestimate stand-level AGB stocks by 4% (1%–17% range across forests) because assume structurally complete trees, underestimate total AGB loss by 29% (6%–57% range across forests) due to overlooked damage-related AGB losses, and overestimate AGB loss via mortality by 22% (7%–80% range across forests) because of the assumption that trees are undamaged before dying. Our results indicate that forest carbon fluxes are higher than previously thought. Damage on living trees is an underappreciated component of the forest carbon cycle that is likely to become even more important as the frequency and severity of forest disturbances increase.  相似文献   
22.
Tropical and subtropical dry woodlands are rich in biodiversity and carbon. Yet, many of these woodlands are under high deforestation pressure and remain weakly protected. Here, we assessed how deforestation dynamics relate to areas of woodland protection and to conservation priorities across the world's tropical dry woodlands. Specifically, we characterized different types of deforestation frontier from 2000 to 2020 and compared them to protected areas (PAs), Indigenous Peoples' lands and conservation areas for biodiversity, carbon and water. We found that global conservation priorities were always overrepresented in tropical dry woodlands compared to the rest of the globe (between 4% and 96% more than expected, depending on the type of conservation priority). Moreover, about 41% of all dry woodlands were characterized as deforestation frontiers, and these frontiers have been falling disproportionately in areas with important regional (i.e. tropical dry woodland) conservation assets. While deforestation frontiers were identified within all tropical dry woodland classes of woodland protection, they were lower than the average within protected areas coinciding with Indigenous Peoples' lands (23%), and within other PAs (28%). However, within PAs, deforestation frontiers have also been disproportionately affecting regional conservation assets. Many emerging deforestation frontiers were identified outside but close to PAs, highlighting a growing threat that the conserved areas of dry woodland will become isolated. Understanding how deforestation frontiers coincide with major types of current woodland protection can help target context-specific conservation policies and interventions to tropical dry woodland conservation assets (e.g. PAs in which deforestation is rampant require stronger enforcement, inactive deforestation frontiers could benefit from restoration). Our analyses also identify recurring patterns that can be used to test the transferability of governance approaches and promote learning across social–ecological contexts.  相似文献   
23.
Identifying the drivers of community structure and dynamics is a major pursuit in ecology. Emphasis is typically placed on the importance of local scale interactions when attempting to explain these fundamental ecological patterns. However, regional scale phenomena are also important predictors. The importance of regional scale context should be more evident in assemblages where multiple species are close to their range margins. Here, we test the importance of regional scale context using data from a temperate forest plot that contains two species groups – one near its northern range limit and one near its southern range limit. We show the proximity of species to their southern or northern range margins is linked to local scale co-occurrence, similarity in gene expression responses to a key environmental driver, demographic performance and inter-specific variation in conspecific negative density dependence. In sum, many of the key local scale patterns and processes of interest to community ecologists are linked to biogeographic context that is frequently ignored.  相似文献   
24.
Intact tropical forests are generally considered to be resistant to invasions by exotic species, although the shrub Clidemia hirta (Melastomataceae) is highly invasive in tropical forests outside its native range. Release from natural enemies (e.g., herbivores and pathogens) contributes to C. hirta invasion success where native melastomes are absent, and here we examine the role of enemies when C. hirta co-occurs with native Melastomataceae species and associated herbivores and pathogens. We study 21 forest sites within agricultural landscapes in Sabah, Malaysian Borneo, recording herbivory rates in C. hirta and related native Melastoma spp. plants along two 100-m transects per site that varied in canopy cover. Overall, we found evidence of enemy release; C. hirta had significantly lower herbivory (median occurrence of herbivory per plant = 79% of leaves per plant; median intensity of herbivory per leaf = 6% of leaf area) than native melastomes (93% and 20%, respectively). Herbivory on C. hirta increased when closer to native Melastoma plants with high herbivory damage, and in more shaded locations, and was associated with fewer reproductive organs on C. hirta. This suggests host-sharing by specialist Melastomataceae herbivores is occurring and may explain why invasion success of C. hirta is lower on Borneo than at locations without related native species present. Thus, natural enemy populations may provide a “biological control service” to suppress invasions of exotic species (i.e., biotic resistance). However, lower herbivory pressures in more open canopy locations may make highly degraded forests within these landscapes more susceptible to invasion.  相似文献   
25.
Understanding what drives changes in tree mortality as well as the covariates influencing trees' response is a research priority to predict forest responses to global change. Here, we combined drone photogrammetry and ground-based data to assess the influence of crown exposure to light (relative to total crown area), growth deviations (relative to conspecifics), tree size, and species' wood density (as a surrogate for light-demanding and shade-tolerant life-history strategies) on the mortality of 984 canopy trees in an Amazon terra firme forest. Trees with lower wood density were less prone to die when their proportion of crown was more exposed to sunlight, but this relationship with relative crown exposure weakened and slightly reversed as wood density increased. Trees growing less than their species average had higher mortality, especially when the species' wood density decreased. The role of wood density in determining the survival of canopy trees under varying light conditions indicates differential responses of light-demanding versus shade-tolerant species. Our results highlight the importance of accounting for life-history strategies, via plant functional types, in vegetation dynamic models aiming to predict forest demography under a rapidly changing climate. Abstract in Spanish is available with online material.  相似文献   
26.
浙江建德青冈常绿阔叶林凋落量研究   总被引:17,自引:0,他引:17       下载免费PDF全文
 本文报道了浙江建德青冈常绿阔叶林的凋落量及各类凋落物的凋落特征。 6年的测定结果表明,青冈林的年均凋落量为5547.6kg/(hm2·a),其中枯叶量占68.32%,枯枝、落果、其它凋落物各占14.82%、15.04%和1.82%。各类凋落量具有明显的季节与年际变化规律,其季节分配还具年际波动现象。各类凋落物的凋落特征从一定角度反映了植物群落一般的生物学与生态学特性,以及植物对特殊环境条件的适应性。  相似文献   
27.
T. Hiura 《Oecologia》1995,104(3):265-271
To evaluate whether the intermediate-disturbance hypothesis applies on regional scales, the relationship between the species diversity and gap formation regime of beech forests was examined. The mean gap size and the variation of gap sizes showed no correlation with species diversity. The mean windstorm interval varied widely, but geographical trends, such as latitudinal gradient, were not observed. However, locations that sustained an intermediate frequency of disturbance had the highest species diversity. Although a latitudinal gradient of disturbance was not apparent, the intermediate-disturbance hypothesis was partly supported on a geographic scale. The most predictable model for species diversity was a multiple regression model composed of two factors, the windstorm interval and the cumulative temperature of the growing season. The fact that the temperature was of greater importance than the disturbance interval indicates that the most important factor in predicting forest species diversity is the amount of available energy on a geographic scale.  相似文献   
28.
Does nitrogen availability control rates of litter decomposition in forests?   总被引:14,自引:1,他引:13  
Prescott  C. E. 《Plant and Soil》1995,168(1):83-88
The effects of increased exogenous N availability on rates of litter decomposition were assessed in several field fertilization trials. In a jack pine (Pinus banksiana Lamb.) forest, needle litter decomposed at the same rate in control plots and in plots fertilized with urea and ammonium nitrate (1350 kg N ha-1) with or without P and K. Mixed needle litter of western hemlock (Tsuga heterophylla (Raf.) Sarg.), western red cedar (Thuja plicata Donn) and Douglas-fir (Pseudotsuga menziesii (Mirb.) Franco) incubated in plots recently amended with sewage sludge (500 kg N ha-1) lost less weight during 3 years than did litter in control plots. Forest floor material also decomposed more slowly in plots amended with sewage sludge. Paper birch (Betula papyrifera Marsh.) leaf litter placed on sewage sludge (1000 kg N ha-1), pulp sludge, or sewage-pulp sludge mixtures decomposed at the same rate as leaf litter in control plots. These experiments demonstrate little effect of exogenous N availability on rates of litter decomposition.The influence of endogenous N availability on rates of litter decomposition was examined in a microcosm experiment. Lodgepole pine (Pinus contorta var. latifolia Engelm.) needle litter collected from N-fertilized trees (525 kg N ha-1 in ammonium nitrate) were 5 times richer in N than needles from control trees (1.56% N versus 0.33% N in control trees), but decomposed at the same rate. Green needles from fertilized trees contained twice as much N as needles from control trees (1.91% N versus 0.88% N), but decomposed at the same rate. These experiments suggest that N availability alone, either exogenous or endogenous, does not control rates of litter decomposition. Increased N availability, through fertilization or deposition, in the absence of changes in vegetation composition, will not alter rates of litter decomposition in forests.  相似文献   
29.
Factors related to diversity of decomposer fungi in tropical forests   总被引:8,自引:0,他引:8  
Recent studies suggest that host-preferences are common among certain groups of tropical fungal decomposers but rare in others, and sometimes occur where we least expect them. Host preferences among microfungi and ascomycetes that decompose leaf litter are common but usually involve differences in relative frequencies more than presence/absence, so their diversity may be loosely correlated with species richness of host trees. Strong host-specificity appears to be rare among wood decomposer fungi, whereas characteristics of their substrata and habitat are very important for this group. Anthropogenic disturbance predisposed a tropical forest to subsequent hurricane damage, and the resulting direct and indirect effects on host diversity and habitat heterogeneity were reflected in the decomposer fungal community more than sixty years after the original disturbance. While species richness of dictyostelid slime molds and functional diversity of their bacterial prey increased with disturbance, the more diverse microfungi and ascomycetes were apparently negatively affected by disturbance.  相似文献   
30.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号