首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   21篇
  免费   1篇
  国内免费   1篇
  2020年   1篇
  2019年   2篇
  2017年   1篇
  2016年   1篇
  2014年   1篇
  2013年   2篇
  2011年   1篇
  2008年   1篇
  2007年   1篇
  2004年   2篇
  2000年   1篇
  1998年   2篇
  1996年   1篇
  1994年   1篇
  1993年   2篇
  1992年   1篇
  1986年   1篇
  1982年   1篇
排序方式: 共有23条查询结果,搜索用时 0 毫秒
21.
We describe an easy and inexpensive way to determine whether intertidal microhabitats remain wet during tidal emersion. This new technique uses agarose beads (120 üm diameter when fully hydrated) that shrink in a graded fashion as they dry. The agarose beads allow variability in surface wetness to be gauged over distances of less than 1 mm. Describe this parameter of microclimate is important in order to predict the likelihood and spatial pattern of survival of settled larvae, reproductive propagules, and other microscopic stages in the life histories of organisms growing in intertidal and other water-stressed environments. For the brown seaweed Pelvetia fastigiata (J. Ag.) DeToni (Fucales, Phaeophyta), the use of agarose beads demonstrated that survival of zygotes during tidal emersion was highes at those sites that remain damp. Temperature alone was found to be an unreliable measure of wetness within a single microhabitat (e.g. red algal turf).  相似文献   
22.
The photosynthetic performance of the intertidal alga Petalonia fascia (0. F. Muller) Kuntze (Scytosiphona-ceae, Phaeophyta) has been investigated, both in air and water, by analyzing the relationship between apparent photosynthesis rate and photon irradiance and inorganic carbon. In relation to the use of photon irradiance, it was found that the net photosynthetic capacity in water was 5.7 times that in air (fully hydrated thallus). The light compensation point was achieved at 5.9 and 3.0 μmol photons m?2 s?1 in air and water, respectively. The light onset-saturation parameter and the photosynthetic efficiency were 77% and 25% greater in water than in air, respectively. The dark respiration rate was one-third greater when emersed in comparison to submersion conditions. These data suggest that the photosynthetic response to irradiance in P. fascia is similar to that in infralittoral species rather than the intertidal species. This assessment can be explained by the winter seasonality of the bladed stage of growth, when storms and waves permit a permanent hydrated status of P. fascia that in the intertidal zone. Moreover, the minimum tissue water content that permitted active photosynthesis in the alga was around 20%. The net photosynthetic capacity as a function of inorganic carbon (C) concentration in water was 1.5 times that in air. Photosynthesis was saturated in both media with respect to the availability of inorganic C in natural conditions. The affinity to inorganic C, and the carbon conductance, were two orders of magnitude higher in air than in water. However, the higher photosynthetic capacity when submerged in comparison to emersion conditions suggests that P. fascia can assimilate the external HCO3,– or the occurrence of a CO2 concentrating mechanism in this species.  相似文献   
23.
While the importance of canopy‐forming algae in structuring ecosystems is recognized, their role in the carbon budget is still not well understood. To our knowledge, no measurements of rocky shores primary production and respiration under emersion periods have been carried out in situ. A benthic chamber coupled to a CO2‐infrared gas analyzer was used to measure gross primary production and respiration on the Ascophyllum nodosum (L.) Le Jol. zone of a sheltered rocky shore in Brittany, France. Over a year of monthly measurements on the zone with and without the A. nodosum canopy showed fairly high production and respiration values for the global community as well as carbon fluxes due to the canopy that largely dominated the benthic metabolism of the zone. The strong canopy respiration relative to the primary production also suggested a high metabolic activity by microscopic heterotrophs on the surface of the alga. Both the canopy and the understory annual primary production and respiration were under the control of light and temperature seasonal variations. Finally, the range of the amount of carbon produced on the A. nodosum zone during diurnal emersions was estimated. Additional measures accounting for the day–night cycles and seasonal light variations over an entire tidal cycle are, however, necessary to establish an annual carbon budget. Such measures using the benthic chamber together with complementary techniques would allow a better understanding of the functioning of sheltered rocky shores.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号