首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   80篇
  免费   6篇
  2021年   1篇
  2016年   1篇
  2015年   3篇
  2014年   2篇
  2013年   3篇
  2012年   1篇
  2011年   5篇
  2010年   1篇
  2009年   1篇
  2008年   3篇
  2007年   5篇
  2006年   4篇
  2005年   2篇
  2004年   1篇
  2003年   2篇
  2002年   4篇
  2001年   5篇
  2000年   2篇
  1999年   4篇
  1998年   1篇
  1997年   2篇
  1996年   1篇
  1994年   1篇
  1993年   1篇
  1992年   2篇
  1991年   4篇
  1990年   1篇
  1989年   2篇
  1988年   2篇
  1987年   1篇
  1986年   2篇
  1985年   4篇
  1984年   3篇
  1983年   3篇
  1982年   1篇
  1981年   1篇
  1980年   1篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有86条查询结果,搜索用时 328 毫秒
21.
Calreticulin is an endoplasmic reticulum resident Ca(2+)-binding chaperone. The importance of the protein is illustrated by embryonic lethality because of impaired cardiac development in calreticulin-deficient mice. The molecular details underlying this phenotype are not understood. In this study, we show that overexpression of activated calcineurin reverses the defect in cardiac development observed in calreticulin-deficient mice and rescues them from embryonic lethality. The surviving mice show no defect in cardiac development but exhibited growth retardation, hypoglycemia, increased levels of serum triacylglycerols, and cholesterol. Reversal of embryonic lethality because of calreticulin deficiency by activated calcineurin underscores the impact of the calreticulin-calcineurin functions on the Ca(2+)-dependent signaling cascade during early cardiac development. These findings show that calreticulin and calcineurin play fundamental roles in Ca(2+)-dependent pathways essential for normal cardiac development and explain the molecular basis for the rescue of calreticulin-deficient phenotype.  相似文献   
22.
Calnexin deficiency and endoplasmic reticulum stress-induced apoptosis   总被引:7,自引:0,他引:7  
In this study, we used calnexin-deficient cells to investigate the role of this protein in ER stress-induced apoptosis. We found that calnexin-deficient cells are relatively resistant to ER stress-induced apoptosis. However, caspase 3 and 8 cleavage and cytochrome c release were unchanged in these cells, indicating that ER to mitochondria "communication" during apoptotic stimulation is not affected in the absence of calnexin. The Bcl-2:Bax ratio was also not significantly changed in calnexin-deficient cells regardless of whether the ER stress was induced with thapsigargin or not. Ca(2+) homeostasis and ER morphology were unaffected by the lack of calnexin, but ER stress-induced Bap31 cleavage was significantly inhibited. Immunoprecipitation experiments revealed that Bap31 forms complexes with calnexin, which may play a role in apoptosis. The results suggest that calnexin may not play a role in the initiation of the ER stress but that the protein has an effect on later apoptotic events via its influence on Bap31 function.  相似文献   
23.
Calreticulin: not just another calcium-binding protein   总被引:15,自引:0,他引:15  
In this paper we review some of the rapidly expanding information about calreticulin, a Ca2+-binding/storage protein of the endoplasmic reticulum. The emphasis is placed on the structure and function of calreticulin. We believe that calreticulin is a multifunctional Ca2+-binding protein and that distinct functional properties of the protein may be localized to each of the three structural domains of calreticulin. Most evidence indicates that calreticulin is a resident endoplasmic reticulum protein. However, it can also be found outside of the endoplasmic reticulum compartment, i.e. in the nuclear envelope, in the nucleus, in the cytotoxic granules in T-lymphocytes and in acrosomal vesicles of sperm cells. The evidence reviewed here clearly suggests that calreticulin has other functions in addition to its role as a Ca2+ storage protein in the endoplasmic reticulum.Abbreviations SR sarcoplasmic reticulum - ER endoplasmic reticulum  相似文献   
24.
25.
Summary Calreticulin was identified in a variety of rabbit tissues by Western blot analysis. Indirect immunofluorescence studies on cultured cells or frozen sections from the corresponding tissues revealed that the protein was distributed to the endoplasmic reticulum or sarcoplasmic reticulum. Calreticulin was found to be an abundant calcium-binding protein in non-muscle and smooth muscle cells and a constitutent calcium-binding protein in cardiac and skeletal muscle. From the immunoblot data, calreticulin may exist as an isoform in rabbit neural retina. The present study establishes the ubiquity of calreticulin in intracellular calcium binding.  相似文献   
26.
Chick embryonic neural retina (NR) dedifferentiates in culture and can transdifferentiate spontaneously into retinal pigment epithelium (RPE). Both, primary RPE and transdifferentiated RPE (RPEt), are characterized by pigmentation, expression of RPE-specific protein, eRPEAG and lack of expression of the neural cell adhesion molecule, NCAM. In contrast, NR cells are unpigmented and express NCAM but not eRPE(AG). Functionally, both primary RPE and the RPEt cells display a pH(i) response to bFGF, which is different from that of the NR. We used these characteristics to distinguish cell types in primary cultures of chick NR and follow the changes in phenotype that occur during transdifferentiation. We show that the RPEt forms as small "islands" in the packed regions of the primary, "mother" NR cell sheets, in a stochastic process. Because of a small number of cells involved in the initiation of the transdifferentiation we refer to it as a "leader effect" to contrast it with the "community effect" which requires many competent cells to be present in a group to be able to respond to an inductive signal. The RPEt then expands centrifugally and underneath the surrounding NR sheet. To determine if the RPEt maintains its identity in isolation while displaying the RPE-typical phenotypic plasticity, we explanted the islands of RPEt and treated half of them with bFGF. The untreated RPEt maintained its closely packed, polygonal pigmented phenotype but the bFGF-treated RPEt transdifferentiated into a non-pigmented, NR-like phenotype, indicating that RPEt encompasses the full differentiation repertoire of native RPE.  相似文献   
27.
As a result of further SAR studies on a piperidinyl piperidine scaffold, we report the discovery of compound 44, a potent, orally bioavailable CCR2 antagonist. While having some in vitro hERG activity, this molecule was clean in an in vivo model of QT prolongation. In addition, it showed excellent efficacy when dosed orally in a transgenic murine model of acute inflammation.  相似文献   
28.
Simple sequence repeat (SSR) markers provide a powerful tool for genetic linkage map construction that can be applied for identification of quantitative trait loci (QTL). In this study, a total of 640 new SSR markers were developed from an enriched genomic DNA library of the cassava variety 'Huay Bong 60' and 1,500 novel expressed sequence tag-simple sequence repeat (EST-SSR) loci were developed from the Genbank database. To construct a genetic linkage map of cassava, a 100 F(1) line mapping population was developed from the cross Huay Bong 60 by 'Hanatee'. Polymorphism screening between the parental lines revealed that 199 SSRs and 168 EST-SSRs were identified as novel polymorphic markers. Combining with previously developed SSRs, we report a linkage map consisted of 510 markers encompassing 1,420.3?cM, distributed on 23 linkage groups with a mean distance between markers of 4.54?cM. Comparison analysis of the SSR order on the cassava linkage map and the cassava genome sequences allowed us to locate 284 scaffolds on the genetic map. Although the number of linkage groups reported here revealed that this F(1) genetic linkage map is not yet a saturated map, it encompassed around 88% of the cassava genome indicating that the map was almost complete. Therefore, sufficient markers now exist to encompass most of the genomes and efficiently map traits in cassava.  相似文献   
29.
Tuberization in cassava (Manihot esculenta Crantz) occurs simultaneously with plant development, suggesting competition of photoassimilate partitioning between the shoot and the root organs. In potato, which is the most widely studied tuber crop, there is ample evidence suggesting that metabolism and regulatory processes in leaf may have an impact on tuber formation. To search for leaf proteins putatively involved in regulating tuber generation and/or development in cassava, comparative proteomic approaches have been applied to monitor differentially expressed leaf proteins during root transition from fibrous to tuberous. Stringent cross comparison and statistical analysis between two groups with different plant ages using Student’s t test with 95% significance level revealed a number of protein spots whose abundance were significantly altered (P < 0.05) during week 4 to week 8 of growth. Of these, 39 spots were successfully identified by ion trap LC–MS/MS. The proteins span various functional categories from antioxidant and defense, carbohydrate metabolism, cyanogenesis, energy metabolism, miscellaneous and unknown proteins. Results suggested possible metabolic switches in the leaf that may trigger/regulate storage root initiation and growth. This study provides a basis for further functional characterization of differentially expressed leaf proteins, which can help understand how biochemical processes in cassava leaves may be involved in storage root development.  相似文献   
30.
In the present study, we have shown that calreticulin is a major Ca(2+)-sequestering protein in pancreatic microsomes. This protein is a peripheral membrane protein and could be extracted from the microsomal membrane with carbonate buffer at pH 11.4. Calreticulin was identified in the membrane fractions by immunoblotting with a specific antibody, by a 45Ca2+ overlay technique, and by NH2-terminal amino acid analysis of the purified protein. Immunocytochemical localization of calreticulin in pancreatic acinar cells and pancreatic fibroblasts showed that the protein is localized to the ER membranes in these cells. We were unable to detect calsequestrin or any calsequestrin-like proteins in the pancreas and found no evidence for the existence of large numbers of specialized, calreticulin-containing vesicles which could be an equivalent of the calsequestrin-containing calciosomes previously reported in this tissue. Purified pancreatic calreticulin binds Ca2+ with both a low and a high capacity (approximately 1 mol of Ca2+/mol of protein and approximately 20-23 mol of Ca2+/mol of protein). The concentrations of Ca2+ required for half-maximal saturation of the low and high capacity sites were approximately 4-6 microM and approximately 1.5 mM, respectively. We conclude that calreticulin, which is confined to the lumen of the ER, plays a major role in Ca2+ storage in pancreatic cells.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号