首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   173篇
  免费   0篇
  国内免费   7篇
  2023年   1篇
  2022年   2篇
  2021年   1篇
  2020年   1篇
  2019年   2篇
  2017年   2篇
  2016年   1篇
  2015年   1篇
  2014年   4篇
  2013年   7篇
  2012年   3篇
  2011年   17篇
  2010年   7篇
  2009年   5篇
  2008年   14篇
  2007年   19篇
  2006年   10篇
  2005年   10篇
  2004年   8篇
  2003年   9篇
  2002年   6篇
  2001年   4篇
  1999年   3篇
  1997年   3篇
  1996年   2篇
  1995年   1篇
  1994年   5篇
  1993年   1篇
  1992年   1篇
  1991年   1篇
  1990年   1篇
  1989年   1篇
  1988年   3篇
  1986年   4篇
  1985年   4篇
  1984年   4篇
  1983年   1篇
  1982年   3篇
  1981年   3篇
  1980年   4篇
  1975年   1篇
排序方式: 共有180条查询结果,搜索用时 15 毫秒
21.
Herbivores are reported to slow down as well as enhance nutrient cycling in grasslands. These conflicting results may be explained by differences in herbivore type. In this study we focus on herbivore body size as a factor that causes differences in herbivore effects on N cycling. We used an exclosure set-up in a floodplain grassland grazed by cattle, rabbits and common voles, where we subsequently excluded cattle and rabbits. Exclusion of cattle lead to an increase in vole numbers and a 1.5-fold increase in net annual N mineralization at similar herbivore densities (corrected to metabolic weight). Timing and height of the mineralization peak in spring was the same in all treatments, but mineralization in the vole-grazed treatment showed a peak in autumn, when mineralization had already declined under cattle grazing. This mineralization peak in autumn coincides with a peak in vole density and high levels of N input through vole faeces at a fine-scale distribution, whereas under cattle grazing only a few patches receive all N and most experience net nutrient removal. The other parameters that we measured, which include potential N mineralization rates measured under standardized laboratory conditions and soil parameters, plant biomass and plant nutrient content measured in the field, were the same for all three grazing treatments and could therefore not cause the observed difference. When cows were excluded, more litter accumulated in the vegetation. The formation of this litter layer may have added to the higher mineralization rates under vole grazing, through enhanced nutrient return through litter or through modification of microclimate. We conclude that different-sized herbivores have different effects on N cycling within the same habitat. Exclusion of large herbivores resulted in increased N annual mineralization under small herbivore grazing.  相似文献   
22.
There was little release of extractable SO4-S during four weeks from CS2 applied by injecting into two S-deficient soils. In this incubation experiment, the rate of CS2 was 30 μg S g, placement was injection at 9 cm depth, soil temperature was 20°C, and soil moisture tension was 33 kPa. The yield of barley forage after seven weeks in the greenhouse showed only small increases from 10 or 30 μg S g−1 of CS2 as compared to Na2SO4, on the two soils. While CS2 supplied little plant available S in the short term, it was an effective inhibitor of nitrification. In the laboratory, or in the field, the injection of CS2 (with N fertilizers) at a point 9 cm into the soils either stopped or reduced nitrification. In one laboratory experiment, 35 μg of CS2 g−1 of soil with urea reduced nitrification for at least four weeks; and in another experiment 20 μg of CS2 g−1 of soil with aqua NH3 nearly or completely inhibited nitrification at 20 days. In two field experiments, 3 and 12 μg of CS2 g−1 of soil (or 6 and 24 kg ha−1) with aqua NH3 inhibited nitrification from October to the subsequent May. In addition, CS2 reduced the amount of ammonium produced from the soil N, both in these two field experiments and in the laboratory experiments. That is to say, CS2 injected at a point, inhibited both nitrification and ammonification. In other field experiments, CS2 at a rate of 10 kg ha−1 was injected in bands 9 cm deep with urea in October, and by May there was still reduced nitrification. Less than half of the fall-applied urea alone was recovered as mineral N, but with the application of CS2 the recovery was increased to three-quarters. The yield and N uptake of barley grain was increased where fall-applied banded urea or aqua NH3 received banded CS2, (NH4)2CS3, or K2CS3. The average increase in yield from fall-applied fertilizer, from inhibitor with fall-applied fertilizer, and from spring-applied fertilizer was 800, 1370, and 1900 kg ha−1, respectively. In the same order, the apparent % recovery of fertilizer N in grain was 24, 42, and 60.  相似文献   
23.
24.
Previous investigations concerned with in vitro osteogenesis and mineralization have revealed some indication of a participation of cell necroses in the course of calcification. These observations were confirmed by in vivo investigations on desmoid ossification in fetal mouse calvariae, where abundant necrotic osteoblasts were found at the mineralization border and in the osteoid. In the present study, ossification of long bone cortices from fetal mice was investigated by use of electron microscopy. Specimens obtained from the collection of the Institute of Anatomy, Free University of Berlin (mouse fetuses, forearm; rat fetuses, forearm) were reinvestigated for control purposes. In all cases, mineralization of osteoid was accompanied by cell necroses. Cell degeneration was characterized by swelling of the endoplasmic reticulum and loss of the plasma membrane resulting in freely distributed vesicular structures. Cell debris was incorporated within the mineral. Initially, cell necroses in the perichondrium occurred in the region surrounding the hypertrophic cartilage and the matrix of which showed spots of endochondral mineralization. Necrotic osteoblasts occurred simultaneously with mineralization of the osteoid. During further ossification of the long bone cortices, the number of necrotic cells increased markedly. In addition to necrotic cells, healthy osteoblasts, osteocytes and perichondral tissue were present, indicating that an artifact can be excluded. The importance of cell necroses in the process of mineralization is as yet unclear. Possibly, the cells act as calcium and/or phosphate stores, which are liberated by cell death to increase the amount of mineral constituents at sites of mineralization.  相似文献   
25.
Lu Y  Ye L  Yu S  Zhang S  Xie Y  McKee MD  Li YC  Kong J  Eick JD  Dallas SL  Feng JQ 《Developmental biology》2007,303(1):191-201
Dentin matrix protein 1 (DMP1) is expressed in both pulp and odontoblast cells and deletion of the Dmp1 gene leads to defects in odontogenesis and mineralization. The goals of this study were to examine how DMP1 controls dentin mineralization and odontogenesis in vivo. Fluorochrome labeling of dentin in Dmp1-null mice showed a diffuse labeling pattern with a 3-fold reduction in dentin appositional rate compared to controls. Deletion of DMP1 was also associated with abnormalities in the dentinal tubule system and delayed formation of the third molar. Unlike the mineralization defect in Vitamin D receptor-null mice, the mineralization defect in Dmp1-null mice was not rescued by a high calcium and phosphate diet, suggesting a different effect of DMP1 on mineralization. Re-expression of Dmp1 in early and late odontoblasts under control of the Col1a1 promoter rescued the defects in mineralization as well as the defects in the dentinal tubules and third molar development. In contrast, re-expression of Dmp1 in mature odontoblasts, using the Dspp promoter, produced only a partial rescue of the mineralization defects. These data suggest that DMP1 is a key regulator of odontoblast differentiation, formation of the dentin tubular system and mineralization and its expression is required in both early and late odontoblasts for normal odontogenesis to proceed.  相似文献   
26.
任海  李志安 《应用生态学报》2007,18(10):2389-2390
由国际恢复生态学会和美国生态学会联合主办的2007年国际恢复生态学会(第18届)和美国生态学会年会(第92届)于2007年8月5—10日在美国的加州圣荷塞市(San Jo-se)举行,来自世界各国和地区的近4000名代表参加了会议.大会的主题是“变化世界中基于生态学的恢复(Ecology-based restoration in a changing world)”.本次会议论文集收录摘要3000多篇,分为专题研讨会24个、有组织的口头报告专题51个、投稿的口头报告163个、培训班24个、特别研讨专题30个、墙报专题72个以及野外考察21次,另有大量会议组织者及非组织者举办的相关活动(如学报编辑对…  相似文献   
27.
东北黑土有机磷的矿化过程研究   总被引:1,自引:0,他引:1  
用室内恒温控湿培养法和埋袋法研究了不同时间序列下黑土有机磷的矿化过程.结果表明,无论是实验室培养法还是埋袋法,有机磷含量和矿化速率都逐渐下降,累积矿化率逐渐上升.培养法中,两个处理的矿化速率均在1个月时最大,分别为31.67和38.75 mg·kg-1·month-1,6个月时累积矿化率和矿化速率分别为7.9%,13.26 mg·kg-1·month-1;9.24%,17.99 mg·kg-1·month-1.埋袋法中,5个有机物料处理的矿化速率均在1年时最大,分别为55.67、55.65、49.60、19.71和22.52 mg·kg-1·month-1,3年时玉米根和小麦根处理的累积矿化率和矿化速率较高(二者3年的累积矿化率约50%,矿化速率约35 mg·kg-1·month-1),而大豆根和草根的处理则较低.同时,两种研究方法均表明,有机磷初始含量影响其矿化率和矿化速率,有机磷初始含量愈高,其矿化率和矿化速率就愈高.  相似文献   
28.
29.
Mineralized cartilage in the skeleton of chondrichthyan fishes   总被引:1,自引:0,他引:1  
The cartilaginous endoskeleton of chondrichthyan fishes (sharks, rays, and chimaeras) exhibits complex arrangements and morphologies of calcified tissues that vary with age, species, feeding behavior, and location in the body. Understanding of the development, evolutionary history and function of these tissue types has been hampered by the lack of a unifying terminology. In order to facilitate reciprocal illumination between disparate fields with convergent interests, we present levels of organization in which crystal orientation/size delimits three calcification types (areolar, globular, and prismatic) that interact in two distinct skeletal types, vertebral and tessellated cartilage. The tessellated skeleton is composed of small blocks (tesserae) of calcified cartilage (both prismatic and globular) overlying a core of unmineralized cartilage, while vertebral cartilage usually contains all three types of calcification.  相似文献   
30.
Nitrogen cycling in poplar stands defoliated by insects   总被引:3,自引:0,他引:3  
Large-scale outbreaks of defoliating insects are common in temperate forests. These outbreaks are thought to be responsible for substantial cycling of nitrogen (N), and its loss from the system. Gypsy moth (Lymantria dispar) populations within poplar plots were manipulated over 2 years so that the ecosystem-wide consequences of catastrophic defoliation on N cycling could be examined. The quantities of N in leaf litter-fall, ammonia volatilization and soil N pools were estimated across the two seasons. Defoliated leaf biomass was estimated from experimentally derived approximate digestibility factors and added to the mass of senesced leaf to determine total annual leaf production. Throughout the growing season the defoliation treatment peaked at about 40% in year 1 and 100% in year 2. Rapid regrowth after defoliation meant that only 45% of the annual leaf biomass was consumed in the defoliation treatment in year 2, while control plots suffered about 20% consumption each year. In each year, defoliated plots produced 20% more leaf biomass and N than the controls, a phenomenon attributed to compensatory photosynthesis. No substantial losses of N via ammonia volatilization, nitrous oxide emission or nitrate leaching were observed. Neither was there any sustained or substantial gain in the soils microbial biomass or inorganic N pools. These observations suggest that the defoliated poplars were able to compete with soil microbes and N loss mechanisms for soil N as it became available, thereby ameliorating the effects of defoliation on soil nitrogen cycling. We conclude from this study that the N mineralized from defoliation residues was conserved in this plantation ecosystem.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号