首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   158篇
  免费   24篇
  2021年   1篇
  2020年   4篇
  2017年   1篇
  2016年   2篇
  2015年   6篇
  2014年   12篇
  2013年   8篇
  2012年   7篇
  2011年   9篇
  2010年   5篇
  2009年   6篇
  2008年   2篇
  2007年   8篇
  2006年   7篇
  2005年   6篇
  2004年   11篇
  2003年   11篇
  2002年   7篇
  2001年   8篇
  2000年   7篇
  1999年   4篇
  1998年   3篇
  1997年   4篇
  1996年   1篇
  1995年   2篇
  1993年   4篇
  1992年   2篇
  1990年   2篇
  1989年   1篇
  1988年   1篇
  1987年   1篇
  1986年   3篇
  1985年   3篇
  1983年   1篇
  1980年   2篇
  1979年   3篇
  1977年   1篇
  1976年   3篇
  1975年   7篇
  1974年   1篇
  1972年   3篇
  1969年   1篇
  1920年   1篇
排序方式: 共有182条查询结果,搜索用时 15 毫秒
21.
22.
Mitochondrial dysfunction underlying changes in neurodegenerative diseases is often associated with apoptosis and a progressive loss of neurons, and damage to the mitochondrial genome is proposed to be involved in such pathologies. In the present study we designed a mouse model that allows us to specifically induce mitochondrial DNA toxicity in the forebrain neurons of adult mice. This is achieved by CaMKIIα-regulated inducible expression of a mutated version of the mitochondrial UNG DNA repair enzyme (mutUNG1). This enzyme is capable of removing thymine from the mitochondrial genome. We demonstrate that a continual generation of apyrimidinic sites causes apoptosis and neuronal death. These defects are associated with behavioral alterations characterized by increased locomotor activity, impaired cognitive abilities, and lack of anxietylike responses. In summary, whereas mitochondrial base substitution and deletions previously have been shown to correlate with premature and natural aging, respectively, we show that a high level of apyrimidinic sites lead to mitochondrial DNA cytotoxicity, which causes apoptosis, followed by neurodegeneration.A variety of both exogenous and endogenous reactive compounds present a constant threat to the integrity of DNA in living cells. DNA damage introduced by such compounds can lead to high and deleterious mutation rates as well as DNA cytotoxicity, both to the nuclear and the mitochondrial genome. This has triggered the evolution of several different DNA repair pathways (28). One is the base excision repair (BER) pathway, which repairs small base alterations that do not distort the DNA helix. Repair of such highly abundant lesions by BER is performed by a multistep process that is initiated by a damage-specific DNA glycosylase, which removes the damaged base. One of these glycosylases is uracil-DNA glycosylase (UDG), which acts to preserve the genome by removing mutagenic uracil residues from the DNA. This glycosylase, as well as the OGG1 glycosylase that is specialized for the removal of oxidized bases, exists in a nuclear and mitochondrial splice form (1, 11, 37, 45). Accordingly, BER of a variety of lesions has been observed in mitochondria (26, 31).Damage to the mitochondrial DNA (mtDNA) can cause respiratory chain deficiency and lead to disorders that have varied phenotypes (35, 41). Many involve neurological features that are often associated with cell loss within specific brain regions. These pathologies, along with the increasing evidence of a decline in mitochondrial function with aging, have raised speculation that key changes in mitochondrial DNA sequences and functions could have a vital role in age-related neurodegenerative diseases (41). This has also been studied in several model organisms. Mouse models with respiratory chain deficient dopamine neurons have demonstrated adult onset Parkinsonism phenotype (16), and cell death induced by mitochondrial toxicity is likely to underlie Alzheimer disease (32). Mitochondrial oxidative stress and accumulation of mtDNA damage are believed to be particularly devastating to postmitotic differentiated tissue, including neurons (30). The mtDNA contains genetic information for 13 polypeptides that are a part of the electron transport chain and for rRNAs and tRNAs that are necessary for mitochondrial protein synthesis. Thus, damage to the mtDNA genome will affect the energetic capacities of the mitochondria and also influence the level of reactive oxygen species (ROS) and ultimately the susceptibility to apoptosis (30, 35).Some recent influential studies have assessed the effect of mtDNA mutagenesis, including small base-pair substitutions and larger mtDNA deletions, on the life span of mice. It was concluded that a massive increase in the frequency of mtDNA base-pair substitutions are required for inducing premature aging, whereas the number of mtDNA deletions coincides better with natural aging (25, 47-49).In the present study, we have combined two novel transgenic mouse models, which allow the induction of a high number of apyrimidinic (AP) sites specifically to the mitochondrial genome in adults simply by the addition of doxycycline to the diet. Such AP sites are created by the expression of a mutated version of mitochondrion-targeted human UDG (abbreviated here as mutUNG1), whereby an amino acid substitution results in an enzyme that removes thymine, in addition to uracil, from DNA (23). The CaMKIIα promoter restricts expression of the mutUNG1 to forebrain neurons (34). We demonstrate that a continuous generation of AP sites leads to apoptosis, accelerated neurodegeneration, and impaired behavior.  相似文献   
23.
The aim of this study was to investigate the potential costs related to male and female structures in a small, hermaphroditic alpine plant species, Parnassia palustris L. We studied in the field the effect of experimental manipulation of seed set (female structures) as well as anthers and staminodes (male structures) on next year's survival, flowering, seed set and growth. We found no statistically significant differences between the treatments in survival, number of flowers and fruits, fruit/flower ratio, seed number or mean mass per seed the following year. Furthermore, there was no statistically significant difference in growth response between the treatments. These observations indicate both that the manipulations of the flowers the previous year had no effect on growth and that the competition between growth and sexual reproduction was negligible. Our results may reflect small investments in reproduction, abundance of soil resources and/or that all resources saved by the plant one year are not necessarily invested in reproduction or growth next year.  相似文献   
24.
25.
During four breeding seasons, 2003–2006, we studied the relationship between snow cover and nesting performance in pink-footed geese (Anser brachyrhynchus) in a key breeding site on Svalbard. Snow cover in late May, i.e., at the time of egg laying of geese, was derived from MODIS satellite images. Snow cover had a profound cascading effect on reproductive output via the number of nesting pairs and timing of nesting, which affected nest success, while there was only a tendency for a negative effect on clutch size. Hence, we estimated a five-fold difference in the number of young produced (to post-hatching) between years with little snow and years with high snow cover. The results from the study area correlated with whole-population productivity estimates recorded in autumn. Thus, snow cover derived from MODIS satellite images appears to provide a useful indicator of the breeding conditions in the Arctic.  相似文献   
26.
Neuroendocrine (NE) cells may play a role in prostate cancer progression. Both androgen deprivation and cAMP are well known inducers of NE differentiation (NED) in the prostate. Gene-expression profiling of LNCaP cells, incubated in androgen stripped medium, showed that the Cbeta isoform of PKA is up-regulated during NE differentiation. Furthermore, by using semi-quantitative RT-PCR and immunoblotting analysis, we observed that the Cbeta splice variants are differentially regulated during this process. Whereas the Cbeta2 splice variant is down-regulated in growth arrested LNCaP cells, the Cbeta1, Cbeta3 and Cbeta4 variants, as well as the RIIbeta subunit of PKA, are induced in NE-like LNCaP cells. The opposite effect of Cbeta expression could be mimicked by androgen stimulation, implying the Cbeta gene of PKA as a putative new target gene for the androgen receptor in prostate cancer. Moreover, to investigate expression of PKA subunits during prostate cancer progression, we did immunoblotting of several prostatic cell lines and normal and tumor tissue from prostate cancer patients. Interestingly, multiple Cbeta subunits were also observed in human prostate specimens, and the Cbeta2 variant was up-regulated in tumor cells. In conclusion, it seems that the Cbeta isoforms play different roles in proliferation and differentiation and could therefore be potential markers for prostate cancer progression.  相似文献   
27.
28.
29.
Zinc transporters and the cellular trafficking of zinc   总被引:1,自引:0,他引:1  
Zinc is an essential nutrient for all organisms because this metal serves as a catalytic or structural cofactor for many different proteins. Zinc-dependent proteins are found in the cytoplasm and within many organelles of the eukaryotic cell including the nucleus, the endoplasmic reticulum, Golgi, secretory vesicles, and mitochondria. Thus, cells require zinc transport mechanisms to allow cells to efficiently accumulate the metal ion and distribute it within the cell. Our current knowledge of these transport systems in eukaryotes is the focus of this review.  相似文献   
30.
1.?Input of external subsidies in the Arctic may have substantial effects on predator populations that otherwise would have been limited by low local primary productivity. 2.?We explore life-history traits, age-specific fecundity, litter sizes and survival, and the population dynamics of an Arctic fox (Vulpes lagopus) population to explore the influence of the spatial distribution and temporal availability of its main prey; including both resident and migrating (external) prey resources. 3.?This study reveals that highly predictable cross-boundary subsidies from the marine food web, acting through seasonal access to seabirds, sustain larger local Arctic fox populations. Arctic fox dens located close to the coast in Svalbard were found to have higher occupancy rates, as expected from both high availability and high temporal and spatial predictability of prey resources (temporally stable external subsidies). Whereas the occupancy rate of inland dens varied between years in relation to the abundance of reindeer carcasses (temporally varying resident prey). 4.?With regard to demography, juvenile Arctic foxes in Svalbard have lower survival rates and a high age of first reproduction compared with other populations. We suggest this may be caused by a lack of unoccupied dens and a saturated population.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号