首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   5729篇
  免费   571篇
  国内免费   315篇
  2023年   48篇
  2022年   39篇
  2021年   149篇
  2020年   192篇
  2019年   177篇
  2018年   138篇
  2017年   173篇
  2016年   189篇
  2015年   339篇
  2014年   337篇
  2013年   427篇
  2012年   362篇
  2011年   274篇
  2010年   243篇
  2009年   406篇
  2008年   391篇
  2007年   392篇
  2006年   340篇
  2005年   281篇
  2004年   268篇
  2003年   225篇
  2002年   180篇
  2001年   177篇
  2000年   160篇
  1999年   139篇
  1998年   131篇
  1997年   115篇
  1996年   74篇
  1995年   50篇
  1994年   51篇
  1993年   50篇
  1992年   29篇
  1991年   16篇
  1990年   13篇
  1989年   11篇
  1988年   5篇
  1987年   5篇
  1986年   2篇
  1985年   4篇
  1983年   3篇
  1982年   8篇
  1981年   2篇
排序方式: 共有6615条查询结果,搜索用时 15 毫秒
21.
22.
Thermographic visualization of cell death in tobacco and Arabidopsis   总被引:4,自引:0,他引:4  
Pending cell death was visualized by thermographic imaging in bacterio‐opsin transgenic tobacco plants. Cell death in these plants was characterized by a complex lesion phenotype. Isolated cell death lesions were preceded by a colocalized thermal effect, as previously observed at sites infected by tobacco mosaic virus (TMV) ( Chaerle et al. 1999 Nature Biotechnology 17, 813–816). However, in most cases, a coherent front of higher temperature, trailed by cell death, initiated at the leaf base and expanded over the leaf lamina. In contrast to the homogenous thermal front, cell death was first visible close to the veins, and subsequently appeared as discrete spots on the interveinal tissue, as cell death spread along the veins. Regions with visible cell death had a lower temperature because of water evaporation from damaged cells. In analogy with previous observations on the localized tobacco–TMV interaction ( Chaerle et al. 1999 ), the kinetics of thermographic and continuous gas exchange measurements indicated that stomatal closure preceded tissue collapse. Localized spontaneous cell death could also be presymptomatically visualized in the Arabidopsis lsd2 mutant.  相似文献   
23.
24.
The polypeptide composition of the large and small subunits of Rubisco (ribulose-1,5-bisphosphate carboxylase/oxygenase) from Arabidopsis thaliana, A. suecica and Cardaminopsis arenosa have been studied by IEF (isoelectric focusing) analysis. The putative recent alopolyploid origin of A. suecica is supported. The chloroplast encoded large subunits served to identify solely A. thaliana as the maternal parent whereas the nuclear encoded small subunits indicate C. arenosa as the paternal species.  相似文献   
25.
Members of the casein kinase 1 (CK1) family are evolutionarily conserved eukaryotic protein kinases involved in various cellular, physiological, and developmental processes in yeast. However, the biological roles of CK1 members in plants are poorly understood. Here, we report that an Arabidopsis CK1 member named casein kinase 1-like 8 (CKL8) was ubiquitously expressed in all plant organs, mainly in the stems of seedlings according to quantitative real-time PCR. Western blotting showed a remarkable expression of the AtCKL8 gene in transgenic plants induced by high salinity. A histochemical assay of AtCKL8 promoter::GUS expression revealed that the AtCKL8 promoter is very active in both seedlings and adult plants subjected to the salinity stress, while no GUS activity was detectable in all the transgenic plants grown under normal conditions. In a subcellular distribution analysis, the AtCKL8-GFP fusion protein was localized mainly in the cell membrane. AtCKL8-overexpressing transgenic plants showed an insensitivity to high salinity and an early flowering phenotype. Overall, these findings suggest that AtCKL8 plays a positive role in NaCl signaling and improves salt stress tolerance in transgenic Arabidopsis.  相似文献   
26.
27.
Cell walls are dynamic and multi-component materials that play important roles in many areas of plant biology. The composition and interactions of the structural elements give rise to material properties, which are modulated by the activity of wall-related enzymes. Studies of the genes and enzymes that determine wall composition and function have made great progress, but rarely take account of potential compensatory changes in wall polymers that may accompany and accommodate changes in other components, particularly for specific polysaccharides. Here, we present a method that allows the simultaneous examination of the mass distributions and quantities of specific cell wall matrix components, allowing insight into direct and indirect consequences of cell wall manipulations. The method employs gel-permeation chromatography fractionation of cell wall polymers followed by enzyme-linked immunosorbent assay to identify polymer types. We demonstrate the potential of this method using glycan-directed monoclonal antibodies to detect epitopes representing xyloglucans, heteromannans, glucuronoxylans, homogalacturonans (HGs) and methyl-esterified HGs. The method was used to explore compositional diversity in different Arabidopsis organs and to examine the impacts of changing wall composition in a number of previously characterized cell wall mutants. As demonstrated in this article, this methodology allows a much deeper understanding of wall composition, its dynamism and plasticity to be obtained, furthering our knowledge of cell wall biology.  相似文献   
28.
Serine (Ser) decarboxylase (SDC) catalyzes the conversion of Ser to ethanolamine (EA) in plants, while the physiological implications of the enzyme activity remain elusive. Here, we report that SDC gene expression in Arabidopsis was greatly induced by treatments with Ni2+ (24-fold) and Mn2+ (4-fold), and discuss possible genetic engineering strategies using the SDC gene for environmental stress management.  相似文献   
29.
Flowers, the reproductive structures of the approximately 400 000 extant species of flowering plants, exist in a tremendous range of forms and sizes, mainly due to developmental differences involving the number, arrangement, size and form of the floral organs of which they consist. However, this tremendous diversity is underpinned by a surprisingly robust basic floral structure in which a central group of carpels forms on an axis of determinate growth, almost invariably surrounded by two successive zones containing stamens and perianth organs, respectively. Over the last 25 years, remarkable progress has been achieved in describing the molecular mechanisms that control almost all aspects of flower development, from the phase change that initiates flowering to the final production of fruits and seeds. However, this work has been performed almost exclusively in a small number of eudicot model species, chief among which is Arabidopsis thaliana. Studies of flower development must now be extended to a much wider phylogenetic range of flowering plants and, indeed, to their closest living relatives, the gymnosperms. Studies of further, more wide-ranging models should provide insights that, for various reasons, cannot be obtained by studying the major existing models alone. The use of further models should also help to explain how the first flowering plants evolved from an unknown, although presumably gymnosperm-like ancestor, and rapidly diversified to become the largest major plant group and to dominate the terrestrial flora. The benefits for society of a thorough understanding of flower development are self-evident, as human life depends to a large extent on flowering plants and on the fruits and seeds they produce. In this preface to the Special Issue, we introduce eleven articles on flower development, representing work in both established and further models, including gymnosperms. We also present some of our own views on current trends and future directions of the flower development field.  相似文献   
30.
In a previous study, we demonstrated that Arabidopsis Antioxidant Protein1 (ATX1) plays an essential role in copper (Cu) homeostasis, conferring tolerance to both excess and subclinically deficient Cu. The Cu-binding motif MXCXXC was required for the physiological function of ATX1. In this study, we found that overexpression of ATX1 resulted in hypersensitivity to severe Cu deficiency despite enhancing tolerance to subclinical Cu deficiency. However, overexpression of mutated ATX1, replacing the Cu-binding motif MXCXXC with MXGXXG, abolished the hypersensitivity, for no differences from the wild type under the same conditions. Thus, the expression of ATX1 must be cautiously regulated to avoid homeostatic imbalance with the over-chelation of Cu.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号