首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   249篇
  免费   4篇
  2023年   1篇
  2021年   4篇
  2020年   1篇
  2019年   6篇
  2018年   19篇
  2017年   4篇
  2016年   4篇
  2015年   14篇
  2014年   34篇
  2013年   24篇
  2012年   14篇
  2011年   21篇
  2010年   13篇
  2009年   17篇
  2008年   16篇
  2007年   18篇
  2006年   13篇
  2005年   8篇
  2004年   11篇
  2003年   6篇
  2002年   4篇
  1999年   1篇
排序方式: 共有253条查询结果,搜索用时 903 毫秒
21.
Tissue-inherent factors such as cell-cell and cell-extracellular matrix interactions are regarded to exert a potentially large impact on adipogenesis as well as on secretory functions of adipose tissue. However, an appropriate 3-D adipogenesis model useful for addressing such interactions is still lacking. In this study, using tissue-engineering techniques, we demonstrate for the first time the development of coherent fat pads consisting of unilocular signet-ring cells in vitro. The constructs were generated by differentiating 3T3-L1 preadipocytes on 3-D polymeric scaffolds for either 9, 21, or 35 days in vitro. Only long-term culture yielded uniform tissues histologically comparable to native fat. Light and scanning electron microscopy provided direct evidence of 3-D tissue coherence and cell-cell contact in a tissue context, which was in strong contrast to conventional 2-D monolayer culture. Further differences between the two culture systems included enhanced secretion of leptin in 3-D tissue culture and differences in laminin expression (mRNA and protein level). Increase of triglyceride content over culture time and mRNA expression of other adipocyte genes, such as PPARgamma and Glut-4, were found to be similar. Implantation of long-term differentiated tissue constructs in nude mice resulted in further development and maintenance of fat pads. The presented model system is suggested to contribute to a better understanding of adipose tissue development and function facilitating studies on tissue-inherent interactions in vitro and in vivo.  相似文献   
22.
In this study multipotent adipose-derived stem cells isolated from human adipose tissue (hMADS cells) were shown to differentiate into adipose cells in serum-free, chemically defined medium. During the differentiation process, hMADS cells exhibited a gene expression pattern similar to that described for rodent clonal preadipocytes and human primary preadipocytes. Differentiated cells displayed the key features of human adipocytes, i.e., expression of specific molecular markers, lipolytic response to agonists of beta-adrenoreceptors (beta2-AR agonist > beta1-AR agonist > beta3-AR agonist) and to the atrial natriuretic peptide, insulin-stimulated glucose transport, and secretion of leptin and adiponectin. hMADS cells were able to respond to drugs as inhibition of adipocyte differentiation was observed in the presence of prostaglandin F2alpha, tumour necrosis factor-alpha, and nordihydroguaiaretic acid, a natural polyhydroxyphenolic antioxidant. Thus, for the first time, human adipose cells with normal karyotype and indefinite life span have been established. They represent a novel and valuable tool for studies of fat tissue development and metabolism.  相似文献   
23.
24.
25.
26.
27.
28.
Here, we enriched a human cell population from adipose tissue that exhibited both mesenchymal plasticity, self-renewal capacity, and a cell-surface marker profile indistinguishable from that of bone marrow-derived mesenchymal stem cells. In addition to adipogenic and osteogenic differentiation, these adipose-derived stem cells displayed skeletal myogenic potential when co-cultured with mouse skeletal myocytes in reduced serum conditions. Physical incorporation of stem cells into multinucleated skeletal myotubes was determined by genetic lineage tracing, whereas human-specific antibody staining was employed to demonstrate functional contribution of the stem cells to a myogenic lineage. To investigate the effects of hypoxia, cells were maintained and differentiated at 2% O(2). In contrast with reports on bone marrow-derived stem cells, both osteogenic and adipogenic differentiation were significantly attenuated. In summary, the relative accessibility of adipose-derived mesenchymal stem cells from human donors provides opportunity for molecular investigation of mechanistic dysfunction in disease settings and may introduce new prospects for cell-based therapy.  相似文献   
29.
Disturbed Wnt signaling has been implicated in numerous diseases, including type 2 diabetes and the metabolic syndrome. In the present study, we have investigated cross-talk between insulin and Wnt signaling pathways using preadipocytes with and without knockdown of the Wnt co-receptors LRP5 and LRP6 and with and without knock-out of insulin and IGF-1 receptors. We find that Wnt stimulation leads to phosphorylation of insulin signaling key mediators, including Akt, GSK3β, and ERK1/2, although with a lower fold stimulation and slower time course than observed for insulin. These Wnt effects are insulin/IGF-1 receptor-dependent and are lost in insulin/IGF-1 receptor double knock-out cells. Conversely, in LRP5 knockdown preadipocytes, insulin-induced phosphorylation of IRS1, Akt, GSK3β, and ERK1/2 is highly reduced. This effect is specific to insulin, as compared with IGF-1, stimulation and appears to be due to an inducible interaction between LRP5 and the insulin receptor as demonstrated by co-immunoprecipitation. These data demonstrate that Wnt and insulin signaling pathways exhibit cross-talk at multiple levels. Wnt induces phosphorylation of Akt, ERK1/2, and GSK3β, and this is dependent on insulin/IGF-1 receptors. Insulin signaling also involves the Wnt co-receptor LRP5, which has a positive effect on insulin signaling. Thus, altered Wnt and LRP5 activity can serve as modifiers of insulin action and insulin resistance in the pathophysiology of diabetes and metabolic syndrome.  相似文献   
30.
A water-soluble extract from the stems of Cucurbita moschata, code named PG105, was previously found to contain strong anti-obesity activities in a high fat diet-induced obesity mouse model. One of its biological characteristics is that it inhibits 3T3-L1 adipocyte differentiation. To isolate the biologically active compound(s), conventional solvent fractionation was performed, and the various fractions were tested for anti-adipogenic activity using Oil Red O staining method. A single spot on thin layer chromatography of the chloroform fraction showed a potent anti-adipogenic activity. When purified, the structure of its major component was resolved as dehydrodiconiferyl alcohol (DHCA), a lignan, by NMR and mass spectrometry analysis. In 3T3-L1 cells, synthesized DHCA significantly reduced the expression of several adipocyte marker genes, including peroxisome proliferator-activated receptor γ (Pparg), CCAAT/enhancer-binding protein α (Cebpa), fatty acid-binding protein 4 (Fabp4), sterol response element-binding protein-1c (Srebp1c), and stearoyl-coenzyme A desaturase-1 (Scd), and decreased lipid accumulation without affecting cell viability. DHCA also suppressed the mitotic clonal expansion of preadipocytes (an early event of adipogenesis), probably by suppressing the DNA binding activity of C/EBPβ, and lowered the production level of cyclinA and cyclin-dependent kinase 2 (Cdk2), coinciding with the decrease in DNA synthesis and cell division. In addition, DHCA directly inhibited the expression of SREBP-1c and SCD-1. Similar observations were made, using primary mouse embryonic fibroblasts. Taken together, our data indicate that DHCA may contain dual activities, affecting both adipogenesis and lipogenesis.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号