首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   43篇
  免费   13篇
  2023年   1篇
  2022年   1篇
  2021年   5篇
  2020年   4篇
  2019年   3篇
  2018年   4篇
  2017年   2篇
  2016年   2篇
  2015年   7篇
  2013年   3篇
  2012年   1篇
  2010年   1篇
  2009年   2篇
  2008年   1篇
  2007年   2篇
  2006年   1篇
  2005年   1篇
  2004年   1篇
  2003年   1篇
  2002年   1篇
  2001年   2篇
  1998年   1篇
  1997年   2篇
  1994年   2篇
  1991年   1篇
  1990年   1篇
  1982年   2篇
  1978年   1篇
排序方式: 共有56条查询结果,搜索用时 15 毫秒
21.
The Permo‐Triassic mass extinction devastated life on land and in the sea, but it is not clear why some species survived and others went extinct. One explanation is that lineage loss during mass extinctions is a random process in which luck determines which species survive. Alternatively, a phylogenetic signal in extinction may indicate a selection process operating on phenotypic traits. Large body size has often emerged as an extinction risk factor in studies of modern extinction risk, but this is not so commonly the case for mass extinctions in deep time. Here, we explore the evolution of non‐teleostean Actinopterygii (bony fishes) from the Devonian to the present day, and we concentrate on the Permo‐Triassic mass extinction. We apply a variety of time‐scaling metrics to date the phylogeny, and show that diversity peaked in the latest Permian and declined severely during the Early Triassic. In line with previous evidence, we find the phylogenetic signal of extinction increases across the mass extinction boundary: extinction of species in the earliest Triassic is more clustered across phylogeny compared to the more randomly distributed extinction signal in the late Permian. However, body length plays no role in differential survival or extinction of taxa across the boundary. In the case of fishes, size did not determine which species survived and which went extinct, but phylogenetic signal indicates that the mass extinction was not a random field of bullets.  相似文献   
22.
Abstract:  A recent collection of actinopterygian fossil fishes from a previously unreported locality in the Cenomanian or Turonian of southeastern Morocco includes a single specimen of a macrosemiid fish. Macrosemiids are more common in Jurassic and Early Cretaceous deposits, with the previously known range of the family being Late Triassic through Aptian or Albian. This discovery therefore extends the temporal range of the family into the Late Cretaceous. Moreover, macrosemiids had not previously been reported from northern Africa or the Moroccan area of the Tethys basin; therefore, this fossil also increases the geographical range of the family. The Moroccan macrosemiid is described in a new genus and species, Agoultichthys chattertoni . A phylogenetic analysis places it basal to all other genera of the family with the exception of Notagogus . Diagnostic characters of the new species include the high number of scales laterally along the body and the greater number of dorsal fin rays than in other members of the family.  相似文献   
23.
Osteocytes, cells embedded within the bone mineral matrix, inform on key aspects of vertebrate biology. In particular, a relationship between volumes of the osteocytes and bone growth and/or genome size has been proposed for several tetrapod lineages. However, the variation in osteocyte volume across different scales is poorly characterized and mostly relies on incomplete, two‐dimensional information. In this study, we characterize the variation of osteocyte volumes in ray‐finned fishes (Actinopterygii), a clade including more than half of modern vertebrate species in which osteocyte biology is poorly known. We use X‐ray synchrotron micro‐computed tomography (SRµCT) to achieve a three‐dimensional visualization of osteocyte lacunae and direct measurement of their size (volumes). Our specimen sample is designed to characterize variation in osteocyte lacuna morphology at three scales: within a bone, among the bones of one individual and among species. At the intra‐bone scale, we find that osteocyte lacunae vary noticeably in size between zones of organized and woven bone (being up to six times larger in woven bone), and across cyclical bone deposition. This is probably explained by differences in bone deposition rate, with larger osteocyte lacunae contained in bone that deposits faster. Osteocyte lacuna volumes vary 3.5‐fold among the bones of an individual, and this cannot readily be explained by variation in bone growth rate or other currently observable factors. Finally, we find that genome size provides the best explanation of variation in osteocyte lacuna volume among species: actinopterygian taxa with larger genomes (polyploid taxa in particular) have larger osteocyte lacunae (with a ninefold variation in median osteocyte volume being measured). Our findings corroborate previous two‐dimensional studies in tetrapods that also observed similar patterns of intra‐individual variation and found a correlation with genome size. This opens new perspectives for further studies on bone evolution, physiology and palaeogenomics in actinopterygians, and vertebrates as a whole.  相似文献   
24.
A new species of Etelis is described based on 16 specimens collected from the Red Sea and Western Australia, with confirmed genetic records throughout the Indo-West Pacific. It is similar to and was often misidentified as Etelis carbunculus Cuvier, with both species sharing the diagnostic character of low number of developed gill rakers. Nonetheless, the two species are genetically divergent and differ morphologically in adult body length; proportions of eye, snout, cheek and caudal fin; shape of head, opercular spine and sagittal otolith; and coloration of the tip of the upper caudal fin. Etelis boweni has a wide Indo-west Pacific distribution that largely overlaps with E. carbunculus, and the two species are often caught on the same fishing line.  相似文献   
25.
Current methods for monitoring marine fish (including bony fishes and elasmobranchs) diversity mostly rely on trawling surveys, which are invasive, costly, and time‐consuming. Moreover, these methods are selective, targeting a subset of species at the time, and can be inaccessible to certain areas. Here, we used environmental DNA (eDNA), the DNA present in the water column as part of shed cells, tissues, or mucus, to provide comprehensive information about fish diversity in a large marine area. Further, eDNA results were compared to the fish diversity obtained in pelagic trawls. A total of 44 5 L‐water samples were collected onboard a wide‐scale oceanographic survey covering about 120,000 square kilometers in Northeast Atlantic Ocean. A short region of the 12S rRNA gene was amplified and sequenced through metabarcoding generating almost 3.5 million quality‐filtered reads. Trawl and eDNA samples resulted in the same most abundant species (European anchovy, European pilchard, Atlantic mackerel, and blue whiting), but eDNA metabarcoding resulted in more detected bony fish and elasmobranch species (116) than trawling (16). Although an overall correlation between fishes biomass and number of reads was observed, some species deviated from the common trend, which could be explained by inherent biases of each of the methods. Species distribution patterns inferred from eDNA metabarcoding data coincided with current ecological knowledge of the species, suggesting that eDNA has the potential to draw sound ecological conclusions that can contribute to fish surveillance programs. Our results support eDNA metabarcoding for broad‐scale marine fish diversity monitoring in the context of Directives such as the Common Fisheries Policy or the Marine Strategy Framework Directive.  相似文献   
26.
Kurzfassung  Die Strahlenflosser-GattungEoeugnathus Brough, 1939 (Actinopterygii) (alpine Mitteltrias, Ladin) wird anhand neuer Funde aus der Prosanto-Formation Graubündens (Ost-Schweiz) detailliert beschrieben und ihre systematische Stellung innerhalb der Subdivision Halecomorphi neu bewertet. Die morphologischen Untersuchungen ergeben, dass die derzeitige Zuordnung vonEoeugnathus zu den Para-semionotidae unsicher ist, dass hingegen aber eine deutliche Beziehungen zu den Vertretern der Halecomorphi Section B (Grande & Bemis 1998) besteht.   相似文献   
27.
A comparative cytogenetic analysis, using both conventional staining techniques and fluorescence in situ hybridization, of six Indo‐Pacific moray eels from three different genera (Gymnothorax fimbriatus, Gymnothorax flavimarginatus, Gymnothorax javanicus, Gymnothorax undulatus, Echidna nebulosa and Gymnomuraena zebra), was carried out to investigate the chromosomal differentiation in the family Muraenidae. Four species displayed a diploid chromosome number 2n = 42, which is common among the Muraenidae. Two other species, G. javanicus and G. flavimarginatus, were characterized by different chromosome numbers (2n = 40 and 2n = 36). For most species, a large amount of constitutive heterochromatin was detected in the chromosomes, with species‐specific C‐banding patterns that enabled pairing of the homologous chromosomes. In all species, the major ribosomal genes were localized in the guanine‐cytosine‐rich region of one chromosome pair, but in different chromosomal locations. The (TTAGGG)n telomeric sequences were mapped onto chromosomal ends in all muraenid species studied. The comparison of the results derived from this study with those available in the literature confirms a substantial conservation of the diploid chromosome number in the Muraenidae and supports the hypothesis that rearrangements have occurred that have diversified their karyotypes. Furthermore, the finding of two species with different diploid chromosome numbers suggests that additional chromosomal rearrangements, such as Robertsonian fusions, have occurred in the karyotype evolution of the Muraenidae.  相似文献   
28.
Actinopterygians (ray‐finned fishes) successfully passed through four of the big five mass extinction events of the Phanerozoic, but the effects of these crises on the group are poorly understood. Many researchers have assumed that the Permo‐Triassic mass extinction (PTME) and end‐Triassic extinction (ETE) had little impact on actinopterygians, despite devastating many other groups. Here, two morphometric techniques, geometric (body shape) and functional (jaw morphology), are used to assess the effects of these two extinction events on the group. The PTME elicits no significant shifts in functional disparity while body shape disparity increases. An expansion of body shape and functional disparity coincides with the neopterygian radiation and evolution of novel feeding adaptations in the Middle‐Late Triassic. Through the ETE, small decreases are seen in shape and functional disparity, but are unlikely to represent major changes brought about by the extinction event. In the Early Jurassic, further expansions into novel areas of ecospace indicative of durophagy occur, potentially linked to losses in the ETE. As no evidence is found for major perturbations in actinopterygian evolution through either extinction event, the group appears to have been immune to two major environmental crises that were disastrous to most other organisms.  相似文献   
29.
Vertebrate bone is composed of three main cell types: osteoblasts, osteoclasts and osteocytes, the latter being by far the most numerous. Osteocytes are thought to play a fundamental role in bone physiology and homeostasis, however they are entirely absent in most extant species of teleosts, a group that comprises the vast majority of bony ‘fishes’, and approximately half of vertebrates. Understanding how this acellular (anosteocytic) bone appeared and was maintained in such an important vertebrate group has important implications for our understanding of the function and evolution of osteocytes. Nevertheless, although it is clear that cellular bone is ancestral for teleosts, it has not been clear in which specific subgroup the osteocytes were lost. This review aims to clarify the phylogenetic distribution of cellular and acellular bone in teleosts, to identify its precise origin, reversals to cellularity, and their implications. We surveyed the bone type for more than 600 fossil and extant ray‐finned fish species and optimised the results on recent large‐scale molecular phylogenetic trees, estimating ancestral states. We find that acellular bone is a probable synapomorphy of Euteleostei, a group uniting approximately two‐thirds of teleost species. We also confirm homoplasy in these traits: acellular bone occurs in some non‐euteleosts (although rarely), and cellular bone was reacquired several times independently within euteleosts, in salmons and relatives, tunas and the opah (Lampris sp.). The occurrence of peculiar ecological (e.g. anadromous migration) and physiological (e.g. red‐muscle endothermy) strategies in these lineages might explain the reacquisition of osteocytes. Our review supports that the main contribution of osteocytes in teleost bone is to mineral homeostasis (via osteocytic osteolysis) and not to strain detection or bone remodelling, helping to clarify their role in bone physiology.  相似文献   
30.
Adaptive radiations, bouts of morphological divergence coupled with taxonomic proliferation, underpin biodiversity. The most widespread model of radiations assumes a single round, or 'early burst', of elevated phenotypic divergence followed by a decline in rates of change or even stasis. A vertebrate-specific model proposes separate stages: initial divergence in postcranial traits related to habitat use, followed by diversification in cranial morphology linked to trophic demands. However, there is little empirical evidence for either hypothesis. Here, we show that, contrary to both models, separate large-scale radiations of actinopterygian fishes proceeded through distinct cranial and later postcranial stages of morphological diversification. Early actinopterygians and acanthomorph teleosts dispersed in cranial morphospace immediately following the end-Devonian extinction and the Cretaceous origin of the acanthomorph clade, respectively. Significant increases in postcranial morphological variation do not occur until one interval after cranial diversification commenced. Therefore, our results question the universality of the 'general vertebrate model'. Based on the results of model-fitting exercises and application of the divergence order test, we find little evidence that the early onset of cranial diversification in these two radiations is due to elevated rates of cranial change relative to postcranial change early in their evolutionary histories. Instead, postcranial and cranial patterns are best fit by an Ornstein-Uhlenbeck model, which is characterized by constant evolutionary rates coupled with a strong central tendency. Other groups have been reported to show early saturation of cranial morphospace or tropic roles early in their histories, but it is unclear whether these patterns are attributable to dynamics similar to those inferred for our two model radiations.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号