首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   2588篇
  免费   140篇
  国内免费   92篇
  2023年   41篇
  2022年   30篇
  2021年   65篇
  2020年   86篇
  2019年   107篇
  2018年   107篇
  2017年   83篇
  2016年   71篇
  2015年   88篇
  2014年   152篇
  2013年   245篇
  2012年   126篇
  2011年   155篇
  2010年   138篇
  2009年   119篇
  2008年   126篇
  2007年   114篇
  2006年   105篇
  2005年   115篇
  2004年   85篇
  2003年   76篇
  2002年   61篇
  2001年   39篇
  2000年   43篇
  1999年   36篇
  1998年   38篇
  1997年   25篇
  1996年   9篇
  1995年   20篇
  1994年   12篇
  1993年   14篇
  1992年   15篇
  1991年   17篇
  1989年   18篇
  1988年   11篇
  1987年   7篇
  1986年   6篇
  1985年   20篇
  1984年   34篇
  1983年   16篇
  1982年   18篇
  1981年   20篇
  1980年   10篇
  1979年   12篇
  1978年   12篇
  1977年   16篇
  1976年   10篇
  1975年   14篇
  1974年   15篇
  1973年   9篇
排序方式: 共有2820条查询结果,搜索用时 724 毫秒
141.
Allene oxide, (9Z,11E)-12,13-epoxy-9,11-octadecadienoic acid (12,13-EOD), was prepared by incubation of linoleic acid (13S)-hydroperoxide with flaxseed allene oxide synthase (AOS) and purified (as methyl ester) by low temperature HPLC. Identification of pure 12,13-EOD was substantiated by its UV and (1)H NMR spectra and by GC-MS data for its methanol trapping product. The methyl ester of 12,13-EOD (but not the free carboxylic acid) is slowly cyclized in hexane solution, affording a novel cyclopentenone cis-12-oxo-10-phytoenoic acid. Free carboxylic form of 12,13-EOD does not cyclize due to the exceeding formation of macrolactone (9Z)-12-oxo-9-octadecen-11-olide. The spontaneous cyclization of pure natural allene oxide (12,13-EOD) into cis-cyclopentenone have been observed first time.  相似文献   
142.
Transforming growth factor-beta (TGF-beta) superfamily signaling has been implicated in many developmental processes, including pancreatic development. Previous studies are conflicting with regard to an exact role for TGF-beta signaling in various aspects of pancreatic organogenesis. Here we have investigated the role of TGF-beta isoform signaling in embryonic pancreas differentiation and lineage selection. The TGF-beta isoform receptors (RI, RII and ALK1) were localized mainly to both the pancreatic epithelium and mesenchyme at early stages of development, but then with increasing age localized to the pancreatic islets and ducts. To determine the specific role of TGF-beta isoforms, we functionally inactivated TGF-beta signaling at different points in the signaling cascade. Disruption of TGF-beta signaling at the receptor level using mice overexpressing the dominant-negative TGF-beta type II receptor showed an increase in endocrine precursors and proliferating endocrine cells, with an abnormal accumulation of endocrine cells around the developing ducts of mid-late stage embryonic pancreas. This pattern suggested that TGF-beta isoform signaling may suppress the origination of secondary transition endocrine cells from the ducts. Secondly, TGF-beta isoform ligand inhibition with neutralizing antibody in pancreatic organ culture also led to an increase in the number of endocrine-positive cells. Thirdly, hybrid mix-and-match in vitro recombinations of transgenic pancreatic mesenchyme and wild-type epithelium also led to increased endocrine cell differentiation, but with different patterns depending on the directionality of the epithelial-mesenchymal signaling. Together these results suggest that TGF-beta signaling is important for restraining the growth and differentiation of pancreatic epithelial cells, particularly away from the endocrine lineage. Inhibition of TGF-beta signaling in the embryonic period may thus allow pancreatic epithelial cells to progress towards the endocrine lineage unchecked, particularly as part of the secondary transition of pancreatic endocrine cell development. TGF-beta RII in the ducts and islets may normally serve to downregulate the production of beta cells from embryonic ducts.  相似文献   
143.
Zhao C  Slevin JT  Whiteheart SW 《FEBS letters》2007,581(11):2140-2149
N-ethylmaleimide sensitive factor (NSF) is an ATPases associated with various cellular activities protein (AAA), broadly required for intracellular membrane fusion. NSF functions as a SNAP receptor (SNARE) chaperone which binds, through soluble NSF attachment proteins (SNAPs), to SNARE complexes and utilizes the energy of ATP hydrolysis to disassemble them thus facilitating SNARE recycling. While this is a major function of NSF, it does seem to interact with other proteins, such as the AMPA receptor subunit, GluR2, and beta2-AR and is thought to affect their trafficking patterns. New data suggest that NSF may be regulated by transient post-translational modifications such as phosphorylation and nitrosylation. These new aspects of NSF function as well as its role in SNARE complex dynamics will be discussed.  相似文献   
144.
Nishida T  Morita N  Yano Y  Orikasa Y  Okuyama H 《FEBS letters》2007,581(22):4212-4216
When the eicosapentaenoic acid (EPA)-deficient mutant strain IK-1Delta8 of the marine EPA-producing Shewanella marinintestina IK-1 was treated with various concentrations of hydrogen peroxide (H(2)O(2)), its colony-forming ability decreased more than that of the wild type. Protein carbonylation, induced by treating cells with 0.01 mM H(2)O(2) under bacteriostatic conditions, was enhanced only in cells lacking EPA. The amount of cells recovered from the cultures was decreased more significantly by the presence of H(2)O(2) for cells lacking EPA than for those producing EPA. Treatment of the cells with 0.1 mM H(2)O(2) resulted in much lower intracellular concentrations of H(2)O(2) being consistently detected in cells with EPA than in those without EPA. These results suggest that cellular EPA can directly protect cells against oxidative damage by shielding the entry of exogenously added H(2)O(2) in S. marinintestina IK-1.  相似文献   
145.
We describe a Xenopus P2Y receptor that shares only weak homology with members of the mammalian P2Y family, being most similar to human P2Y(11). When activated by nucleotide analogs, it stimulates both calcium and cAMP mobilization pathways, a feature unique, among mammalian P2Y receptors, to P2Y(11). Activity can be blocked by compounds known to act as antagonists of mammalian P2Y(11). Genomic synteny between Xenopus and mammals suggests that the novel gene is a true ortholog of P2Y(11). Xenopus P2Y(11) is transcribed during embryonic development, beginning at gastrulation, and is enriched in the developing nervous system.  相似文献   
146.
Objective: Reduction of cortisone to cortisol is mediated by 11β‐hydroxysteroid dehydrogenase type 1 (11βHSD1), a putative key enzyme in obesity‐related complications. Experimental studies suggest that adipokines, notably leptin and tumor necrosis factor‐α (TNF‐α), are of importance for 11βHSD1 activity. We hypothesized that the regulation of hepatic preceptor glucocorticoid metabolism is gender‐specific and associated with circulating levels of leptin and TNF‐α receptors and/or sex hormones. Research Methods and Procedures: A total of 34 males and 38 women (14 premenopausal and 22 postmenopausal) underwent physical examination and fasting blood sampling. Insulin sensitivity was tested by euglycemic hyperinsulinemic clamps, and hepatic 11βHSD1 enzyme activity was estimated by the conversion of orally‐ingested cortisone to cortisol. Results: Hepatic 11βHSD1 activity was negatively associated with leptin and soluble TNF (sTNF) r1 and sTNFr2 in males. These correlations remained significant after adjustment for age and insulin sensitivity, and for sTNF‐α receptors also after adjustment of BMI and waist circumference. In contrast, 11β reduction of cortisone was positively associated to leptin in females after adjustment for BMI and waist circumference. Discussion: Hepatic 11β reduction shows different links to circulating adipocyte‐derived hormones in males and females. This emphasizes the need for further studies on tissue‐specific regulation of 11βHSD1 in both genders.  相似文献   
147.
Currently, the prevention of ischemic diseases such as myocardial infarction associated with ischemia/reperfusion (I/R) injury remains to be a challenge. Thus, this study was designed to explore the effects of tripartite motif protein 11 (TRIM11) on cardiomyocytes I/R injury and its underlying mechanism. Cardiomyocytes AC16 were used to establish an I/R injury cell model. After TRIM11 downregulation in I/R cells, cell proliferation (0, 12, 24, and 48 h) and apoptosis at 48 h as well as the related molecular changes in oxidative stress-related pathways was detected. Further, after the treatment of TRIM11 overexpression, SP600125, or DUSP1 overexpression, cell proliferation, apoptosis, and related genes were detected again. As per our findings, it was determined that TRIM11 was highly expressed in the cardiomyocytes AC16 after I/R injury. Downregulation of TRIM11 was determined to have significantly reduced I/R-induced proliferation suppression and apoptosis. Besides, I/R-activated c-Jun N-terminal kinase (JNK) signaling and cleaved caspase 3 and Bax expression were significantly inhibited by TRIM11 downregulation. In addition, the overexpression of TRIM11 significantly promoted apoptosis in AC16 cells, and JNK1/2 inhibition and DUSP1 overexpression potently counteracted the induction of TRIM11 overexpression in AC16 cells. These suggested that the downregulation of TRIM11 attenuates apoptosis in AC16 cells after I/R injury probably through the DUSP1-JNK1/2 pathways.  相似文献   
148.
Papillary thyroid carcinoma (PTC) is the most common form of thyroid cancer, and its incidence is on the rise. It has been reported that some matrix metalloproteinases (MMPs) are abnormally expressed in PTC and can be used as diagnostic markers. However, few studies have explored the underlying mechanisms by which MMPs promote tumor progression. In this study, we used microarray analysis to compare the variations of gene expression within the PTC cell populations and their adjacent normal tissues and found that MMP-11 was the most differentially expressed MMP. To investigate the role of MMP-11 in the mediation of thyroid cancer cell development, pEnter-MMP-11 plasmid, and MMP-11 small interfering RNA were applied to up- and downregulate MMP-11 expression of in cultured PTC cell lines K1 and BCPAP. The results suggested that the levels of proliferation and migration of cells transfected with MMP-11 siRNA were significantly reduced, while the levels in MMP-11-plasmid-transfected cells were increased. In terms of the mechanism, experimental data showed that the change in cyclin D1 is consistent with MMP-11 expression, which may explain the changes in proliferation. In addition, Western blot assay was conducted to analyze the p65 and activated (phospho-) p65 protein levels concomitant with MMP-11 adjustments. Variations in intracellular MMP-11 significantly altered the amount of phospho-p65 in thyroid cells, while p65 knockdown did not affect MMP-11 expression. These results suggest that MMP-11 is located upstream of p65 and regulates its activity. Interestingly, the data for the Transwell assay suggested that MMP-11 regulatory migration is also associated with the NF-κB p65 signaling pathway. In conclusion, this report describes the important role of MMP-11 in the regulation of thyroid cell proliferation and migration. Mechanistic studies have shown that cyclin D1 and p65 are important mediators in the processes, which provides a new way to study the mechanism of MMPs promoting the progression of thyroid cancer.  相似文献   
149.
Cadherins are homophilic cell-to-cell adhesion molecules that help cells respond to environmental changes. Newly formed cadherin junctions are associated with increased cell phosphorylation, but the pathways driving this signaling response are largely unknown. Since cadherins have no intrinsic signaling activity, this phosphorylation must occur through interactions with other signaling molecules. We previously reported that cadherin-11 engagement activates joint synovial fibroblasts, promoting inflammatory and degradative pathways important in rheumatoid arthritis (RA) pathogenesis. Our objective in this study was to discover interacting partners that mediate cadherin-11 signaling. Protein array screening showed that cadherin-11 extracellular binding domains linked to an Fc domain (cad11Fc) induced platelet-derived growth factor (PDGFR)-α phosphorylation in synovial fibroblasts and glioblastoma cells. PDGFRs are growth factor receptor tyrosine kinases that promote cell proliferation, survival, and migration in mesodermally derived cells. Increased PDGFR activity is implicated in RA pathology and associates with poor prognosis in several cancers, including sarcoma and glioblastoma. PDGFRα activation by cadherin-11 signaling promoted fibroblast proliferation, a signaling pathway independent from cadherin-11-stimulated IL-6 or matrix metalloproteinase (MMP)-3 release. PDGFRα phosphorylation mediated most of the cad11Fc-induced phosphatidyl-3-kinase (PI3K)/Akt activation, but only part of the mitogen-activated protein kinase (MAPK) response. PDGFRα-dependent signaling did not require cell cadherin-11 expression. Rather, cad11Fc immunoprecipitated PDGFRα, indicating a direct interaction between cadherin-11 and PDGFRα extracellular domains. This study is the first to report an interaction between cadherin-11 and PDGFRα and adds to our growing understanding that cadherin-growth factor receptor interactions help balance the interplay between tissue growth and adhesion.  相似文献   
150.
《Cell》2022,185(13):2324-2337.e16
  1. Download : Download high-res image (343KB)
  2. Download : Download full-size image
  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号