首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   3267篇
  免费   316篇
  国内免费   136篇
  2024年   4篇
  2023年   92篇
  2022年   41篇
  2021年   225篇
  2020年   257篇
  2019年   302篇
  2018年   297篇
  2017年   274篇
  2016年   272篇
  2015年   295篇
  2014年   337篇
  2013年   746篇
  2012年   230篇
  2011年   142篇
  2010年   59篇
  2009年   44篇
  2008年   25篇
  2007年   10篇
  2006年   10篇
  2005年   12篇
  2004年   6篇
  2003年   4篇
  2002年   9篇
  2001年   8篇
  2000年   5篇
  1999年   2篇
  1998年   2篇
  1997年   2篇
  1993年   1篇
  1992年   1篇
  1990年   1篇
  1988年   1篇
  1986年   1篇
  1985年   1篇
  1983年   1篇
排序方式: 共有3719条查询结果,搜索用时 265 毫秒
101.
《Autophagy》2013,9(6):985-986
Autophagy is a cellular pathway that degrades damaged organelles, cytosol and microorganisms, thereby maintaining human health by preventing various diseases including cancers, neurodegenerative disorders and diabetes. In autophagy, autophagosomes carrying cellular cargoes fuse with lysosomes for degradation. The proper autophagosome-lysosome fusion is pivotal for efficient autophagy activity. However, the molecular mechanism that specifically directs the fusion process is not clear. Our study reported that lysosome-localized TECPR1 (TECtonin β-Propeller Repeat containing 1) binds the autophagosome-localized ATG12–ATG5 conjugate and recruits it to autolysosomes. TECPR1 also binds PtdIns3P in an ATG12–ATG5-dependent manner. Consequently, depletion of TECPR1 leads to a severe defect in autophagosome maturation. We propose that the interaction between TECPR1 and ATG12–ATG5 initiates the fusion between the autophagosome and lysosome, and TECPR1 is a TEthering Coherent PRotein in autophagosome maturation.  相似文献   
102.
Emerging lines of evidence have shown that blockade of ubiquitin-proteasome system (UPS) activates autophagy. The molecular players that regulate the relationship between them remain to be elucidated. Bcl-2 associated athanogene 3 (BAG3) is a member of the BAG co-chaperone family that regulates the ATPase activity of heat shock protein 70 (HSP70) chaperone family. Studies on BAG3 have demonstrated that it plays multiple roles in physiological and pathological processes, including antiapoptotic activity, signal transduction, regulatory role in virus infection, cell adhesion and migration. Recent studies have attracted much attention on its role in initiation of autophagy. The current study, for the first time, demonstrates that proteasome inhibitors elicit noncanonical autophagy, which was not suppressed by inhibitors of class III phosphatidylinositol 3-kinase (PtdIns3K) or shRNA against Beclin 1 (BECN1). In addition, we demonstrate that BAG3 is ascribed to activation of autophagy elicited by proteasome inhibitors and MAPK8/9/10 (also known as JNK1/2/3 respectively) activation is also implicated via upregulation of BAG3. Moreover, we found that noncanonical autophagy mediated by BAG3 suppresses responsiveness of HepG2 cells to proteasome inhibitors.  相似文献   
103.
《Autophagy》2013,9(2):278-280
Mitochondria autophagy (mitophagy) is the process of selective degradation of mitochondria that has an important role in mitochondrial quality control. To gain insight into the molecular mechanism of mitophagy, we screened a yeast knockout library for strains that are defective in mitophagy. We found 32 strains that showed a complete or partial block of mitophagy. One of the genes identified, YLR356W, is required for mitophagy, but not for macroautophagy or other types of selective autophagy. The deletion of YLR356W partially inhibits mitophagy during starvation, whereas there is almost complete inhibition at post-log phase. Accordingly, we hypothesize that Ylr356w is required to detect or present aged or dysfunctional mitochondria when cells reach the post-log phase.  相似文献   
104.
Autophagy     
Autophagy is an evolutionarily conserved cellular process through which long-lived proteins and damaged organelles are recycled to maintain energy homeostasis. These proteins and organelles are sequestered into a double-membrane structure, or autophagosome, which subsequently fuses with a lysosome in order to degrade the cargo. Although originally classified as a type of programmed cell death, autophagy is more widely viewed as a basic cell survival mechanism to combat environmental stressors. Autophagy genes were initially identified in yeast and were found to be necessary to circumvent nutrient stress and starvation. Subsequent elucidation of mammalian gene counterparts has highlighted the importance of this process to normal development. This review provides an overview of autophagy, the types of autophagy, its regulation and its known impact on development gleaned primarily from murine models.  相似文献   
105.
《Autophagy》2013,9(1):28-45
Macroautophagy is an intracellular catabolic process involved in the formation of multiple membrane structures ranging from phagophores to autophagosomes and autolysosomes. Dysfunction of macroautophagy is implicated in both physiological and pathological conditions. To date, 38 autophagy-related (ATG) genes have been identified as controlling these complicated membrane dynamics during macroautophagy in yeast; approximately half of these genes are clearly conserved up to human, and there are additional genes whose products function in autophagy in higher eukaryotes that are not found in yeast. The function of the ATG proteins, in particular their ability to interact with a number of macroautophagic regulators, is modulated by posttranslational modifications (PTMs) such as phosphorylation, glycosylation, ubiquitination, acetylation, lipidation, and proteolysis. In this review, we summarize our current knowledge of the role of ATG protein PTMs and their functional relevance in macroautophagy. Unraveling how these PTMs regulate ATG protein function during macroautophagy will not only reveal fundamental mechanistic insights into the regulatory process, but also provide new therapeutic targets for the treatment of autophagy-associated diseases.  相似文献   
106.
《Autophagy》2013,9(11):1953-1964
Autophagy is a membrane-trafficking process whereby double-membrane vesicles called autophagosomes engulf and deliver intracellular material to the vacuole for degradation. Atg4 is a cysteine protease with an essential function in autophagosome formation. Mounting evidence suggests that reactive oxygen species may play a role in the control of autophagy and could regulate Atg4 activity but the precise mechanisms remain unclear. In this study, we showed that reactive oxygen species activate autophagy in the model yeast Saccharomyces cerevisiae and unraveled the molecular mechanism by which redox balance controls Atg4 activity. A combination of biochemical assays, redox titrations, and site-directed mutagenesis revealed that Atg4 is regulated by oxidoreduction of a single disulfide bond between Cys338 and Cys394. This disulfide has a low redox potential and is very efficiently reduced by thioredoxin, suggesting that this oxidoreductase plays an important role in Atg4 regulation. Accordingly, we found that autophagy activation by rapamycin was more pronounced in a thioredoxin mutant compared with wild-type cells. Moreover, in vivo studies indicated that Cys338 and Cys394 are required for the proper regulation of autophagosome biogenesis, since mutation of these cysteines resulted in increased recruitment of Atg8 to the phagophore assembly site. Thus, we propose that the fine-tuning of Atg4 activity depending on the intracellular redox state may regulate autophagosome formation.  相似文献   
107.
《Autophagy》2013,9(5):739-753
In MCF-7 breast tumor cells, ionizing radiation promoted autophagy that was cytoprotective; pharmacological or genetic interference with autophagy induced by radiation resulted in growth suppression and/or cell killing (primarily by apoptosis). The hormonally active form of vitamin D, 1,25D3, also promoted autophagy in irradiated MCF-7 cells, sensitized the cells to radiation and suppressed the proliferative recovery that occurs after radiation alone. 1,25D3 enhanced radiosensitivity and promoted autophagy in MCF-7 cells that overexpress Her-2/neu as well as in p53 mutant Hs578t breast tumor cells. In contrast, 1,25D3 failed to alter radiosensitivity or promote autophagy in the BT474 breast tumor cell line with low-level expression of the vitamin D receptor. Enhancement of MCF-7 cell sensitivity to radiation by 1,25D3 was not attenuated by a genetic block to autophagy due largely to the promotion of apoptosis via the collateral suppression of protective autophagy. However, MCF-7 cells were protected from the combination of 1,25D3 with radiation using a concentration of chloroquine that produced minimal sensitization to radiation alone. The current studies are consistent with the premise that while autophagy mediates a cytoprotective function in irradiated breast tumor cells, promotion of autophagy can also confer radiosensitivity by vitamin D (1,25D3). As both cytoprotective and cytotoxic autophagy can apparently be expressed in the same experimental system in response to radiation, this type of model could be utilized to distinguish biochemical, molecular and/or functional differences in these dual functions of autophagy.  相似文献   
108.
《Autophagy》2013,9(2):234-235
Alterations in macroautophagy (hereafter referred to as “autophagy”) are a common feature of lysosomal storage disorders, and have been hypothesized to play a major role in the pathogenesis of these diseases. We have recently reported multiple defects in autophagy contributing to the lysosomal storage disorder Niemann-Pick type C (NPC). These include increased formation of autophagosomes, slowed turnover of autophagosomes secondary to impaired lysosomal proteolysis, and delivery of stored lipids to the lysosome via autophagy. The study summarized here describes novel methods for the interrogation of individual stages of the autophagic pathway, and suggests mechanisms by which lipid storage may result in broader lysosomal dysfunction.  相似文献   
109.
《Autophagy》2013,9(12):2239-2250
Autophagy is an evolutionarily conserved biological process involved in an array of physiological and pathological events. Without proper control, autophagy contributes to various disorders, including cancer and autoimmune and inflammatory diseases. It is therefore of vital importance that autophagy is under careful balance. Thus, additional regulators undoubtedly deepen our understanding of the working network, and provide potential therapeutic targets for disorders. In this study, we found that RNF216 (ring finger protein 216), an E3 ubiquitin ligase, strongly inhibits autophagy in macrophages. Further exploration demonstrates that RNF216 interacts with BECN1, a key regulator in autophagy, and leads to ubiquitination of BECN1, thereby contributing to BECN1 degradation. RNF216 was involved in the ubiquitination of lysine 48 of BECN1 through direct interaction with the triad (2 RING fingers and a DRIL [double RING finger linked]) domain. We further showed that inhibition of autophagy through overexpression of RNF216 in alveolar macrophages promotes Listeria monocytogenes growth and distribution, while knockdown of RNF216 significantly inhibited these outcomes. These effects were confirmed in a mouse model of L. monocytogenes infection, suggesting that manipulating RNF216 expression could be a therapeutic approach. Thus, our study identifies a novel negative regulator of autophagy and suggests that RNF216 may be a target for treatment of inflammatory diseases.  相似文献   
110.
《Autophagy》2013,9(12):2193-2207
Recent evidence suggests that autophagy may favor fibrosis through enhanced differentiation of fibroblasts in myofibroblasts. Here, we sought to characterize the mediators and signaling pathways implicated in autophagy-induced myofibroblast differentiation. Fibroblasts, serum starved for up to 4 d, showed increased LC3-II/-I ratios and decreased SQSTM1/p62 levels. Autophagy was associated with acquisition of markers of myofibroblast differentiation including increased protein levels of ACTA2/αSMA (actin, α 2, smooth muscle, aorta), enhanced gene and protein levels of COL1A1 (collagen, type I, α 1) and COL3A1, and the formation of stress fibers. Inhibiting autophagy with 3 different class I phosphoinositide 3-kinase and class III phosphatidylinositol 3-kinase (PtdIns3K) inhibitors or through ATG7 silencing prevented myofibroblast differentiation. Autophagic fibroblasts showed increased expression and secretion of CTGF (connective tissue growth factor), and CTGF silencing prevented myofibroblast differentiation. Phosphorylation of the MTORC1 target RPS6KB1/p70S6K kinase was abolished in starved fibroblasts. Phosphorylation of AKT at Ser473, a MTORC2 target, was reduced after initiation of starvation but was followed by spontaneous rephosphorylation after 2 d of starvation, suggesting the reactivation of MTORC2 with sustained autophagy. Inhibiting MTORC2 activation with long-term exposure to rapamycin or by silencing RICTOR, a central component of the MTORC2 complex abolished AKT rephosphorylation. Both RICTOR silencing and rapamycin treatment prevented CTGF and ACTA2 upregulation, demonstrating the central role of MTORC2 activation in CTGF induction and myofibroblast differentiation. Finally, inhibition of autophagy with PtdIns3K inhibitors or ATG7 silencing blocked AKT rephosphorylation. Collectively, these results identify autophagy as a novel activator of MTORC2 signaling leading to CTGF induction and myofibroblast differentiation.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号