首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   874篇
  免费   107篇
  2021年   12篇
  2020年   7篇
  2019年   8篇
  2018年   6篇
  2017年   10篇
  2016年   11篇
  2015年   27篇
  2014年   22篇
  2013年   36篇
  2012年   38篇
  2011年   38篇
  2010年   16篇
  2009年   21篇
  2008年   31篇
  2007年   28篇
  2006年   33篇
  2005年   45篇
  2004年   36篇
  2003年   31篇
  2002年   23篇
  2001年   30篇
  2000年   22篇
  1999年   25篇
  1998年   21篇
  1997年   23篇
  1996年   10篇
  1995年   17篇
  1993年   7篇
  1992年   20篇
  1991年   25篇
  1990年   17篇
  1989年   19篇
  1988年   12篇
  1987年   15篇
  1986年   16篇
  1985年   17篇
  1984年   10篇
  1983年   8篇
  1981年   10篇
  1980年   9篇
  1979年   9篇
  1978年   7篇
  1977年   6篇
  1976年   6篇
  1974年   11篇
  1973年   10篇
  1972年   11篇
  1971年   6篇
  1970年   6篇
  1969年   6篇
排序方式: 共有981条查询结果,搜索用时 750 毫秒
101.
Efficient insulin action requires spatial and temporal coordination of signaling cascades. The prototypical insulin receptor substrate, IRS-1 plays a central role in insulin signaling. By subcellular fractionation IRS-1 is enriched in a particulate fraction, termed the high speed pellet (HSP), and its redistribution from this fraction is associated with signal attenuation and insulin resistance. Anecdotal evidence suggests the cytoskeleton may underpin the localization of IRS-1 to the HSP. In the present study we have taken a systematic approach to examine whether the cytoskeleton contributes to the subcellular fractionation properties and function of IRS-1. By standard microscopy or immunoprecipitation we were unable to detect evidence to support a specific interaction between IRS-1 and the major cytoskeletal components actin (microfilaments), vimentin (intermediate filaments), and tubulin (microtubules) in 3T3-L1 adipocytes or in CHO.IR.IRS-1 cells. Pharmacological disruption of microfilaments and microtubules, individually or in combination, was without effect on the subcellular distribution of IRS-1 or insulin-stimulated tyrosine phosphorylation in either cell type. Phosphorylation of Akt was modestly reduced (20-35%) in 3T3-L1 adipocytes but not in CHO.IR.IRS-1 cells. In cells lacking intermediate filaments (Vim(-/-)) IRS-1 expression, distribution and insulin-stimulated phosphorylation appeared normal. Even after depolymerisation of microfilaments and microtubules, insulin-stimulated phosphorylation of IRS-1 and Akt were maintained in Vim(-/-) cells. Taken together these data indicate that the characteristic subcellular fractionation properties and function of IRS-1 are unlikely to be mediated by cytoskeletal networks and that proximal insulin signaling does not require an intact cytoskeleton.  相似文献   
102.
In vitro experiments with C3H 10T(1/2) mouse cells were performed to determine whether Frequency Division Multiple Access (FDMA) or Code Division Multiple Access (CDMA) modulated radiofrequency (RF) radiations induce changes in gene expression. After the cells were exposed to either modulation for 24 h at a specific absorption rate (SAR) of 5 W/ kg, RNA was extracted from both exposed and sham-exposed cells for gene expression analysis. As a positive control, cells were exposed to 0.68 Gy of X rays and gene expression was evaluated 4 h after exposure. Gene expression was evaluated using the Affymetrix U74Av2 GeneChip to detect changes in mRNA levels. Each exposure condition was repeated three times. The GeneChip data were analyzed using a two-tailed t test, and the expected number of false positives was estimated from t tests on 20 permutations of the six sham RF-field-exposed samples. For the X-ray-treated samples, there were more than 90 probe sets with expression changes greater than 1.3-fold beyond the number of expected false positives. Approximately one-third of these genes had previously been reported in the literature as being responsive to radiation. In contrast, for both CDMA and FDMA radiation, the number of probe sets with an expression change greater than 1.3-fold was less than or equal to the expected number of false positives. Thus the 24-h exposures to FDMA or CDMA RF radiation at 5 W/kg had no statistically significant effect on gene expression.  相似文献   
103.
Dbs was identified in a cDNA-based expression screen for sequences that can cause malignant growth when expressed in murine fibroblasts. In previous studies we have shown that Dbs is a Rho-specific guanine nucleotide exchange factor that can activate RhoA and/or Cdc42 in a cell-specific manner. In this current study we have used a combination of genetic and pharmacological approaches to examine the relative contributions of RhoA x PRK and RhoA x ROCK signaling to Dbs transformation. Our analysis indicates that ROCK is activated in Dbs-transformed cells and that Dbs transformation is dependent upon ROCK I activity. In contrast, there appears to be no requirement for PRK activation in Dbs transformation. Dbs transformation is also associated with increased phosphorylation of myosin light chain and stress fiber formation, both of which occur in a ROCK-dependent manner. Suppression of myosin light chain expression by small interfering RNAs impairs Dbs focus formation, thus establishing a direct link between actinomyosin contraction and Rho-specific guanine nucleotide exchange factor transformation.  相似文献   
104.
Recombinant inbred (RI) mice are frequently used to identify QTL that underlie differences in measurable phenotypes between two inbred strains of mice. Here we show that one RI strain, C57BL/6J x DBA/2J (BXD29), does not develop an inflammatory response following inhalation of LPS. Approximately 25% of F2 mice [F1(BXD29 x DBA/2J) x F1] are also unresponsive to inhaled LPS, suggesting the presence of a recessive mutation in the BXD29 strain. A genomic scan of these F2 mice revealed that unresponsive animals, but not responsive animals, are homozygous for C57BL/6J DNA at a single locus on chromosome 4 close to the genomic location of Tlr4. All progeny between BXD29 and gene-targeted Tlr4-deficient mice are unresponsive to inhaled LPS, suggesting that the mutation in the BXD29 strain is allelic with Tlr4. Moreover, the intact Tlr4 receptor is not displayed on the cell surface of BXD29 macrophages. Finally, a molecular analysis of the Tlr4 gene in BXD29 mice revealed that it is interrupted by a large insertion of repetitive DNA. These findings explain the unresponsiveness of BXD29 mice to LPS and suggest that data from BXD29 mice should not be included when using BXD mice to study phenotypes affected by Tlr4 function. Our results also suggest that the frequency of such unidentified, spontaneously occurring mutations is an issue that should be considered when RI strains are used to identify QTL.  相似文献   
105.
Mice with genetic deletion of the cholesterol transporter ATP binding cassette G1 (ABCG1) have pulmonary lipidosis and enhanced innate immune responses in the airway. Whether ABCG1 regulates adaptive immune responses to the environment is unknown. To this end, Abcg1(+/+) and Abcg1(-/-) mice were sensitized to OVA via the airway using low-dose LPS as an adjuvant, and then challenged with OVA aerosol. Naive Abcg1(-/-) mice displayed increased B cells, CD4(+) T cells, CD8(+) T cells, and dendritic cells (DCs) in lung and lung-draining mediastinal lymph nodes, with lung CD11b(+) DCs displaying increased CD80 and CD86. Upon allergen sensitization and challenge, the Abcg1(-/-) airway, compared with Abcg1(+/+), displayed reduced Th2 responses (IL-4, IL-5, eosinophils), increased neutrophils and IL-17, but equivalent airway hyperresponsiveness. Reduced Th2 responses were also found using standard i.p. OVA sensitization with aluminum hydroxide adjuvant. Mediastinal lymph nodes from airway-sensitized Abcg1(-/-) mice produced reduced IL-5 upon ex vivo OVA challenge. Abcg1(-/-) CD4(+) T cells displayed normal ex vivo differentiation, whereas Abcg1(-/-) DCs were found paradoxically to promote Th2 polarization. Th17 cells, IL-17(+) γδT cells, and IL-17(+) neutrophils were all increased in Abcg1(-/-) lungs, suggesting Th17 and non-Th17 sources of IL-17 excess. Neutralization of IL-17 prior to challenge normalized eosinophils and reduced neutrophilia in the Abcg1(-/-) airway. We conclude that Abcg1(-/-) mice display IL-17-mediated suppression of eosinophilia and enhancement of neutrophilia in the airway following allergen sensitization and challenge. These findings identify ABCG1 as a novel integrator of cholesterol homeostasis and adaptive immune programs.  相似文献   
106.
Molecular clone technology has proven to be a powerful tool for investigating the life cycle of flaviviruses, their interactions with the host, and vaccine development. Despite the demonstrated utility of existing molecular clone strategies, the feasibility of employing these existing approaches in large-scale mutagenesis studies is limited by the technical challenges of manipulating relatively large molecular clone plasmids that can be quite unstable when propagated in bacteria. We have developed a novel strategy that provides an extremely rapid approach for the introduction of mutations into the structural genes of West Nile virus (WNV). The backbone of this technology is a truncated form of the genome into which DNA fragments harboring the structural genes are ligated and transfected directly into mammalian cells, bypassing entirely the requirement for cloning in bacteria. The transfection of cells with this system results in the rapid release of WNV that achieves a high titer (~10(7) infectious units/ml in 48 h). The suitability of this approach for large-scale mutagenesis efforts was established in two ways. First, we constructed and characterized a library of variants encoding single defined amino acid substitutions at the 92 residues of the "pr" portion of the precursor-to-membrane (prM) protein. Analysis of a subset of these variants identified a mutation that conferred resistance to neutralization by an envelope protein-specific antibody. Second, we employed this approach to accelerate the identification of mutations that allow escape from neutralizing antibodies. Populations of WNV encoding random changes in the E protein were produced in the presence of a potent monoclonal antibody, E16. Viruses resistant to neutralization were identified in a single passage. Together, we have developed a simple and rapid approach to produce infectious WNV that accelerates the process of manipulating the genome to study the structure and function of the structural genes of this important human pathogen.  相似文献   
107.
Muscles that are stretched during contraction (eccentric contractions) show deficits in force production and a variety of structural changes, including loss of antibody staining of cytoskeletal proteins. Extracellular Ca(2+) entry and activation of calpains have been proposed as mechanisms involved in these changes. The present study used isolated mouse extensor digitorum longus (EDL) muscles subjected to 10 eccentric contractions and monitored force production, immunostaining of cytoskeletal proteins, and resting stiffness. Possible pathways for Ca(2+) entry were tested with streptomycin (200 μM), a blocker of stretch-activated channels, and with muscles from mice deficient in the transient receptor potential canonical 1 gene (TRPC1 KO), a candidate gene for stretch-activated channels. At 30 min after the eccentric contractions, the isometric force was decreased to 75 ± 3% of initial control and this force loss was reduced by streptomycin but not in the TRPC1 KO. Desmin, titin, and dystrophin all showed patchy loss of immunostaining 30 min after the eccentric contractions, which was substantially reduced by streptomycin and in the TRPC1 KO muscles. Muscles showed a reduction of resting stiffness following eccentric contractions, and this reduction was eliminated by streptomycin and absent in the TRPC1 KO muscles. Calpain activation was determined by the appearance of a lower molecular weight autolysis product and μ-calpain was activated at 30 min, whereas the muscle-specific calpain-3 was not. To test whether the loss of stiffness was caused by titin cleavage, protein gels were used but no significant titin cleavage was detected. These results suggest that Ca(2+) entry following eccentric contractions is through a stretch-activated channel that is blocked by streptomycin and encoded or modulated by TRPC1.  相似文献   
108.
Selective small-molecule inhibitors represent powerful tools for the dissection of complex biological processes. ES(I) (eeyarestatin I) is a novel modulator of ER (endoplasmic reticulum) function. In the present study, we show that in addition to acutely inhibiting ERAD (ER-associated degradation), ES(I) causes production of mislocalized polypeptides that are ubiquitinated and degraded. Unexpectedly, our results suggest that these non-translocated polypeptides promote activation of the UPR (unfolded protein response), and indeed we can recapitulate UPR activation with an alternative and quite distinct inhibitor of ER translocation. These results suggest that the accumulation of non-translocated proteins in the cytosol may represent a novel mechanism that contributes to UPR activation.  相似文献   
109.
Using a parallel synthesis approach to target a non-conserved region of the PI3K catalytic domain a pan-PI3K inhibitor 1 was elaborated to provide alpha, delta and gamma isoform selective Class I PI3K inhibitors 21, 24, 26 and 27. The compounds had good cellular activity and were selective against protein kinases and other members of the PI3K superfamily including mTOR and DNA-PK.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号