首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   317篇
  免费   30篇
  国内免费   46篇
  2023年   2篇
  2022年   5篇
  2021年   2篇
  2020年   3篇
  2019年   3篇
  2018年   3篇
  2017年   10篇
  2016年   1篇
  2015年   4篇
  2014年   10篇
  2013年   15篇
  2012年   8篇
  2011年   16篇
  2010年   9篇
  2009年   16篇
  2008年   18篇
  2007年   27篇
  2006年   28篇
  2005年   12篇
  2004年   15篇
  2003年   18篇
  2002年   10篇
  2001年   9篇
  2000年   12篇
  1999年   10篇
  1998年   10篇
  1997年   10篇
  1996年   9篇
  1995年   6篇
  1994年   5篇
  1993年   8篇
  1992年   8篇
  1991年   6篇
  1990年   10篇
  1989年   10篇
  1988年   2篇
  1987年   9篇
  1986年   8篇
  1985年   2篇
  1984年   7篇
  1982年   4篇
  1981年   2篇
  1980年   2篇
  1979年   3篇
  1977年   1篇
  1974年   1篇
  1968年   1篇
  1967年   1篇
  1965年   1篇
  1964年   1篇
排序方式: 共有393条查询结果,搜索用时 15 毫秒
101.
Decomposition of branch litter of four angiosperm and one conifer species was studied over a two-year period. Litter species and the corresponding forest type are: (i) Shorea robusta, sal forest at 329 m; (ii) Lyonia ovalifolia, mixed-pine broadleaf forest at 1 350 m; (iii) Pinus roxburghii, pine forest at 1 750 m; (iv) Quercus leucotrichophora, mixed oak-pine forest at 1 850 m; and (v) Quercus lanuginosa, mixed oak forest at 2 150 m. The weight loss ranged from 44–89%. Litter moisture and air temperature had significant positive effect on decomposition. The decomposition rate decreased with an increase in altitude and was inversely related with lignin content. Linear combinations of lignin content with rainfall and with temperature indicated significant interactive influence on decomposition.Authorities for plant names are given in Table 1.We gratefully acknowledge financial support from the Department of Science and Technology, Government of India.  相似文献   
102.
F. Berendse  H. Oudhof  J. Bol 《Oecologia》1987,74(2):174-184
Summary The term relative nutrient requirement is introduced in order to measure and to compare the nutrient losses from different perennial plant populations and the amount of nutrient that they need to absorb to compensate these losses. The relative nutrient requirement (L) is defined as the amount of the growth-limiting nutrient that must be taken up to maintain or replace each unit of biomass during a given time interval (e.g., mgN g-1 biomass year-1). It is derived that in a plant community with two competing perennial plant populations, species1 will become dominant if the relative competition coefficient k 12 (sensu De Wit 1960) exceeds the ratio between the relative nutrient requirements of the two species (L 1/L 2), whereas species 2 will become dominant, if k 12 is below this critical ratio. The above-ground litter production was measured inwet heathland communities dominated by Erica tetralix or by Molinia caeruleain order to estimate N and P losses from theaboveground biomass and to calculate the relative N and P requirements of these species. Molinia lost during one year 63% and 34%, respectively, of the amount of N and P present in the above-ground biomass at the end of the growing season. These losses were in Erica 27% and 31%, respectively. The relative N requirements of the two species show the same difference: 7.5 and 2.6 mg N g-1 yr-1, respectively, in Molinia and in Erica. Also the relative P requirement of Molinia is higher as well as that of Erica (0.18 versus 0.08 mg P g-1 yr-1). The relative competition coefficient of Molinia with respect to Erica (k me ) is equal to unity under unfertilized conditions but increases with increasing nutrient supply. Under nutrient-poor conditions k me is below the critical ratio of the relative nutrient requirements of the two species (L m /L e =2.9 or 2.3), so that Erica will be the dominant species. After an increase in nutrient availability k me increases and exceeds this critical limit which results in Molinia replacing Erica. During the last 20 years this replacement of Erica-dominant communities by monocultures of Molinia has been observed in almost all wet heathlands in The Netherlands along with a strong increase in nitrogen availability.  相似文献   
103.
几种树木枯叶分解速率的试验研究   总被引:22,自引:0,他引:22       下载免费PDF全文
 本文对几种树木的枯叶分解速率进行了研究,结果表明枯叶的分解速率因树种不同而异。一年的失重率刺槐、山杏、侧柏、元宝槭、黄栌分别为54%、64%、78%、73%、65%。应用指数衰减模型计算枯叶的年腐解率,刺槐、山杏、侧柏、元宝械、黄栌分别为0.490g/(g·a)、0.597g/(g·a),0.990g/(g·a)、0.800g/(g·a)、0.662g/(g·a)。根据枯叶的化学成分分析表明,枯叶的失重,首先是由粗脂肪,可溶性糖、丹宁,有机碳等的丧失所引起。枯叶在一年的分解过程中,碳、氮含量比值随时间的推移而下降。  相似文献   
104.
Summary In Jarrah (Eucalyptus marginata Donn ex Sm.) forest of south-western Australia dense germination and regeneration of the native legumeAcacia Pulchella R. Br. can occur following moderate to high intensity fire. The effect of this legume understorey on rate of decomposition and change in nutrient content ofE. marginata litter was investigated using the mesh bag techniques and by examining four components of forest floor litter representing increasing stages of decomposition. E. marginata leaf litter confined in mesh bags lost 37% of its initial dry weight in the first 8 months on the forest floor and 44% of its initial dry weight after 20 months. During this period weight loss was similar for leaf litter located in forest without legume understorey and for leaf litter placed under dense stands ofA. pulchella. MixingA. pulchella litter withE. marginata litter had no significant effect on rate ofE. marginata litter breakdown. The presence of understorey vegetation had a marked effect on chemical composition of decomposingE. marginata leaves. After 8 and 20 months exposure on the forest floor, leaf litter in mesh bags placed underA. pulchella understorey had significantly (P<0.001) higher concentration and contained significantly (P<0.001) greater amounts of N, P, K, S, Ca and Mg than leaf litter placed in areas without legume understorey. This effect was particularly marked for N and P. In forest without legume understorey the amounts of these two nutrients inE. marginata leaf litter changed little during the first 20 months of decomposition, but forE. marginata leaf litter in mesh bags underA. pulchella there were absolute gains of up to 68% in the amount of N and 109% in the amount of P during this period. This represents accumulation of N and P from sources outside the litter bags. The concentration of N, P, S, Ca and Mg were higher at each of the four stages of decomposition in eucalypt leaf litter collected from the forest floor beneathA. pulchella compared to eucalypt leaf litter collected in forest without understorey. Concentrations of N, P and S increased with stage of decomposition. Levels of these three nutrients in eucalypt litter from under the legume were 1.5 to 2.9 fold higher than in the same component of litter from forest without understorey. The effect of legume understorey on nutrient concentrations in the forest floor and on Cielement ratios in decomposing litter is discussed in relation to long term rates of litter breakdown and net mineralisation of litter nutrients.  相似文献   
105.
Neal A. Scott  Dan Binkley 《Oecologia》1997,111(2):151-159
The feedback between plant litterfall and nutrient cycling processes plays a major role in the regulation of nutrient availability and net primary production in terrestrial ecosystems. While several studies have examined site-specific feedbacks between litter chemistry and nitrogen (N) availability, little is known about the interaction between climate, litter chemistry, and N availability across different ecosystems. We assembled data from several studies spanning a wide range of vegetation, soils, and climatic regimes to examine the relationship between aboveground litter chemistry and annual net N mineralization. Net N mineralization declined strongly and non-linearly as the litter lignin:N ratio increased in forest ecosystems (r 2 = 0.74, P < 0.01). Net N mineralization decreased linearly as litter lignin concentration increased, but the relationship was significant (r 2 = 0.63, P < 0.01) only for tree species. Litterfall quantity, N concentration, and N content correlated poorly with net N mineralization across this range of sites (r 2 < 0.03, P = 0.17–0.26). The relationship between the litter lignin:N ratio and net N mineralization from forest floor and mineral soil was similar. The litter lignin:N ratio explained more of the variation in net N mineralization than climatic factors over a wide range of forest age classes, suggesting that litter quality (lignin:N ratio) may exert more than a proximal control over net N mineralization by influencing soil organic matter quality throughout the soil profile independent of climate. Received: 16 December 1996 / Accepted: 8 February 1997  相似文献   
106.
This study evaluated one semi-direct and three indirect methods for estimating leaf area index (LAI) by comparing these estimates with direct estimates derived from litter collection. The semi-direct method uses a thin metallic needle to count a number of contacts across fresh litter layers. One indirect method is based on the penetration of diffuse global radiation measured over the course of a day. The second indirect method uses the LAI-2000 plant canopy analyser (PCA) which measures diffuse light penetration from five different sky sectors simultaneously. The third indirect method uses the Demon portable light sensor to measure the penetration of direct beam sunlight at different zenith angles over the course of half a day. The Poisson model of gap frequency was applied to estimate plant area index (PAI) from observed transmittances using the second and third methods. Litter collection from 11 temperate decidous forests gave values of LAI ranging from 1.7 to 7.5. Estimates based on the needle method showed a significant linear relationship with LAI values obtained from litter collections but were systematically lower (by 6–37%). PAI estimates using all three indirect techniques (fixed light sensor system, LAI-2000 and Demon) showed a strong linear relationship with LAI derived from litter collection. Differences, averaged over all forest stands, between PAI estimates from each of the three indirect methods and LAI from litter collections were below 2%. If we consider that LAI=PAI–WAI (wood area index) then, all three indirect methods underestimated LAI by an additional factor close to the value of WAI. One reason could be a local clumping of architectural canopy components: in particular, the spatial dispositions of branchlets and leaves are not independent, leading to a non-random relationship between the distributions of these two canopy components.  相似文献   
107.
Seedlings of yellow birch (Betula alleghaniensis Britton) and sugar maple (Acer saccharum Marsh.) were grown for 2 years in mono-culture and mixed-culture and at three fertility levels. Following the second growing season, senescent leaves were analysed for N concentration, acid hydrolysable substances (AHS), and nonhydrolysable remains (NHR). A litter sub-sample was then inoculated with indigenous soil microflora, incubated 14 weeks, and mass loss was measured. Litter-N was significantly higher at medium than at poor fertility, as well as in yellow birch than in sugar maple litter. The species effect on litter-N increased with increasing fertility. At medium fertility, litter-N of sugar maple litter was lower in mixed-culture than in mono-culture. AHS, NHR as well the NHR/N ratio were significantly higher in yellow birch than in sugar maple litter. At medium fertility, the NHR/N ratio of sugar maple litter was significantly lower in mono-culture than in mixed-culture. Mass loss was significantly greater at medium and rich fertility than at poor fertility, and in yellow birch than in sugar maple litter. At poor fertility, mixed-litter decomposed at a rate comparable to yellow birch, whereas at medium and rich fertility, mixed-litter decomposed at a rate comparable to sugar maple. There was a significant positive relationship between litter-N and mass loss. A similar positive relationship between NHR and mass loss was presumed to be a species effect on decomposition. Results support the hypothesis that species × fertility and species × mixture interactions can be important determinants of litter quality and, by implication, of site nutrient cycling.  相似文献   
108.
Coarse woody debris (CWD) may play a role in nutrient cycling in temperate forests through the leaching of solutes, including dissolved organic carbon (DOC) and dissolved organic nitrogen (DON), to the underlying soil. These fluxes need to be considered in element budget calculations, and have the potential to influence microbial activity, soil development, and other processes in the underlying soil, but studies on leaching from CWD are rare. In this study, we collected throughfall, litter leachate, and CWD leachate in situ at a young mixed lowland forest in NY State, USA over one year. We measured the concentrations of DOC, DON, NH4+, NO3, dissolved organic sulfur, SO42−, Cl, Al, Ca, K, Mg, Na, and P, estimated the flux of these solutes in throughfall, and measured the cover of CWD to gain some insight into possible fluxes from CWD. Concentrations of DOC were much higher in CWD leachate than in throughfall or litter leachate (15 vs. 0.7 and 1.6 mM, respectively), and greater than reported values for other leachates from within forested ecosystems. Other solutes showed a similar pattern, with inorganic N being an exception. Our results suggest that microsite scale fluxes of DOC from CWD may be An high relative to throughfall and litter leaching fluxes, but since CWD covered a relatively small fraction (2%) of the forest floor in our study, ecosystem scale fluxes from CWD may be negligible for this site. Soil directly beneath CWD may be influenced by CWD leaching, in terms of soil organic matter, microbial activity, and N availability. Concentrations of some metals showed correlations to DOC concentrations, highlighting the possibility of complexation by DOM. Several solute concentrations in throughfall, including DOC, showed positive correlations to mean air temperature, and fewer showed positive correlations in litter leachate, while negative correlations were observed to precipitation, suggesting both biological and hydrologic control of solute concentrations.  相似文献   
109.
Bell T  Neill WE  Schluter D 《Oecologia》2003,137(4):578-586
Abstract We tested the hypothesis that interactions in litter mixtures (expressed as the difference between observed and expected decomposition rates) are greater when the component species differ more in their initial litter chemistry. Thereto, we collected freshly senesced leaf litter from a wide range of species from an old field and woodland vegetation, and a fen ecosystem in The Netherlands. Litterbags with either mono-specific litter (20 and 15 species), or litter mixtures (50 and 42 species pairs) of randomly drawn combinations of two representatives from different plant functional types were incubated for 20, 35 and 54 weeks in a purpose-built decomposition bed (woodland/old field) or in the field (fen). Species showed a wide range of decomposition rates. For the woodland/old field species, initial litter C and P concentrations were significantly correlated with litter decomposition rate. For the fen species, litter phenolics concentration was correlated with decomposition rate. If the Sphagnum species were left out of the analyses, initial litter P and phenolics concentration both showed a significant relationship, albeit only with the remaining mass after 1 year. Differences between observed and expected decomposition were often considerable in individual litter mixtures. Regression analysis showed that such differences were not related to the differences in litter chemistry of the component species. Furthermore, litter mixtures containing species with very different initial litter chemistry did not show stronger interaction when tested against litter mixtures containing chemically similar litter types. From these observations we conclude that the difference in initial single litter chemistry parameters of the component is not a useful concept to explain interactions in litter mixtures.Due to an error in the citation line, this revised PDF (published in December 2003) deviates from the printed version, and is the correct and authoritative version of the paper.  相似文献   
110.
Liu  Wenyao  Fox  John E.D.  Xu  Zaifu 《Plant Ecology》2003,164(2):157-170
Montane moist evergreen broad-leaved forest, dominated byLithocarpus and Castanopsis species,is the most extensive stand of subtropical mountain in Yunnan Province, SWChina. Litter production, standing crop of litter on forest floor and nutrientreturn patterns were studied over nine years (1991–1999) in a stand ofprimary evergreen broad-leaved forest in northern crest of the Ailao MountainRange. There were significant yearly variations in litter production, which ismainly related with the masting year of canopy species, and exceptionalphysicalevents (strong winds and snow) in the natural forest. The mean annual smalllitterfall is 7.12 t ha–1 yr–1ofwhich leaf litter account for 65% of the total litterfall. The seasonality ofsmall litterfall was bia-modal, with the main one in the late dry season(April–May) and a lesser one in early winter (October–November).Decomposition quotient value was relatively low with 0.58 for total smalllitterfall. Mean large-wood ( 2.5 cm in diameter) ranged from0.21 to 1.41 t ha–1 yr–1 with amean of 0.52 t ha–1 yr–1.Concentrations of most elements in leaf and twig were slightly greater in wetmonths than dry months, except for C and K. Woody litter had low N and Pconcentrations compared with the leaf and reproductive parts. Nutrient returntothe soil through small litterfall decrease in the orderC>N>Ca>K>Mg>Mn>Al>P>Fe, while nutrient reserve inlitteron the forest floor was in the declining sequenceC>N>Ca>K>Mg>P>Fe>Al>Mn.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号