首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   179篇
  免费   4篇
  2021年   3篇
  2020年   1篇
  2019年   5篇
  2018年   5篇
  2017年   4篇
  2016年   1篇
  2015年   1篇
  2014年   7篇
  2013年   6篇
  2012年   3篇
  2011年   5篇
  2010年   10篇
  2009年   7篇
  2008年   12篇
  2007年   11篇
  2006年   2篇
  2005年   10篇
  2004年   8篇
  2003年   7篇
  2001年   2篇
  1999年   2篇
  1998年   1篇
  1996年   1篇
  1995年   6篇
  1994年   4篇
  1993年   5篇
  1992年   5篇
  1991年   4篇
  1990年   1篇
  1989年   3篇
  1988年   2篇
  1987年   3篇
  1986年   6篇
  1985年   4篇
  1984年   5篇
  1983年   1篇
  1982年   2篇
  1981年   1篇
  1980年   1篇
  1979年   3篇
  1978年   3篇
  1977年   2篇
  1976年   2篇
  1975年   1篇
  1972年   2篇
  1971年   1篇
  1970年   1篇
  1969年   1篇
排序方式: 共有183条查询结果,搜索用时 62 毫秒
101.
102.
The sample of the less common hominoid species at Pa?alar, Kenyapithecus kizili, is characterized by a number of unusual attributes. All ten of the upper central incisors attributed to this species show a distinct, identical pattern of two linear enamel hypoplasias. The two hypoplasias occur on the same portion of the labial crown face, revealing that the two hypoplasia-causing events occurred at the same stage of development in all individuals. The morphology of the two hypoplasias and the amount of time between them, as determined by both their separation and counts of perikymata, are also the same on all teeth. In addition, all of the approximately 70 teeth assigned to K. kizili appear to come from young adults based on degrees of wear; there are no younger or older individuals (diagnostic morphology at most tooth positions would be evident even with heavy wear). Thus, all of the K. kizili individuals (minimum number of individuals is nine: seven males, two females) appear to have died at essentially the same age. It is concluded that the most plausible interpretation of all these features is that the incisor hypoplasias were caused by the same two events in all the K. kizili individuals and that these individuals therefore represent a single birth cohort. As such, and because they died at essentially the same age, they would also have died at the same time, which is consistent with the catastrophic nature of the Pa?alar deposits. The number of coincidences needed to explain all of the attributes of the K. kizili sample if these animals were born in, and died in, different years seems highly improbable. Moreover, the lack of a typical age-class structure for the K. kizili sample, or any age-class structure at all beyond the one age class of young adult, strongly suggests that the species was not resident in the area that contributed to the Pa?alar accumulation, and that K. kizili was not permanently sympatric with the other Pa?alar hominoid, Griphopithecus alpani. Rather, the nine K. kizili individuals must have been transients in, or recent immigrants to, the area at the time of the events that led to the formation of the site. Recent observations on social associations in male chimpanzees offer at least a possible interpretive framework to explain this unprecedented occurrence in the primate fossil record.  相似文献   
103.
A recent study demonstrated that variation in enamel cap crown formation in the anterior teeth is greater than that in the molars from two geographically distinct populations: native indigenous southern Africans and northern Europeans. Eighty southern African and 69 northern European premolars (P3 and P4) were analyzed in the present study. Cuspal, lateral, and total enamel formation times were assessed. Although cuspal enamel formation times were not consistently different between the two populations, both lateral and total enamel formation times generally were. Bonferroni-corrected t-tests showed that southern Africans had significantly shorter lateral enamel formation time for five of the six cusps, as well as significantly shorter total enamel formation time for these same cusps. An analysis of covariance performed on the lingual cusps of the upper third and fourth premolars showed that differences in enamel formation times between these populations remained when crown height was statistically controlled. A further goal of this study was to ascertain, based on perikymata counts, what Neandertal periodicities would have to be in order for their teeth to have lateral enamel formation times equivalent to either southern Africans or northern Europeans. To this end, perikymata were counted on 32 Neandertal premolars, and the counts were inserted into regression formulae relating perikymata counts to periodicity for each population and each tooth type. Neandertal enamel formation times could be equivalent to those of southern Africans or northern Europeans only if their hypothetical periodicities fall within the range of periodicities for African apes and modern humans (i.e., 6-12 days). The analysis revealed that both populations could encompass Neandertal timings, with hypothetical periodicities based on the southern African population necessitating a lower range of periodicity (6-8 days) than those based on the northern European population (8-11 days).  相似文献   
104.
Amelogenin is cleaved by enamelysin (Mmp-20) soon after its secretion, and the cleavage products accumulate in specific locations during enamel formation, suggesting that parent amelogenin proteolysis is necessary for activating its functions. To investigate the precise roles of Mmp-20 and its influence on the assembly of amelogenin, an in vitro enzymatic digestion process mimicking the initial stages of amelogenin proteolysis was investigated at near-physiological conditions using recombinant porcine amelogenin (rP172) and enamelysin. Hierarchically organized nanorod structures formed during different digestion stages were detected by TEM. At the earliest stage, uniformly dispersed parent amelogenin spherical particles, mixed with some darker stained smaller spheres, and accompanying elongated chain-like nanostructures were observed. Cylindrical nanorods, which appeared to be the result of tight assembly of thin subunit cylindrical discs with thicknesses ranging from ∼2.5 to ∼6.0 nm, were formed after an hour of proteolysis. These subunit building blocks stacked to form nanorods with maximum length of ∼100 nm. With the production of more cleavage products, additional morphologies spontaneously evolved from the cylindrical nanorods. Larger ball-like aggregates ultimately formed at the end of proteolysis. The uniform spherical particles, nanorods, morphological patterns evolved from nanorods, and globular aggregated microstructures were successively formed by means of co-assembly of amelogenin and its cleavage products during a comparatively slow proteolysis process. We propose that, following the C-terminal cleavage of amelogenin, co-assembly with its fragments leads to formation of nanorod structures whose properties eventually dictate the super-structural organization of enamel matrix, controlling the elongated growth of enamel apatite crystals.  相似文献   
105.
The teeth of the Homo erectus child (Garba IV) recovered from Melka Kunture Ethiopia and dated to 1.5 Ma are characterized by generalized enamel dysplasia, reduced enamel radio-opacity, and severe attrition. This combination of features is found in a large group of hereditary, generalized enamel dysplasias known as amelogenesis imperfecta (AI). SEM studies carried out on epoxy replicas of teeth from the Garba IV child, confirmed that the defects noted were developmental and not due to diagenesis. The enamel prism arrangement is abnormal and there are deep vertical furrows lacking enamel on both buccal and lingual surfaces of all molars. The lesions differ from those characteristic of linear enamel hypoplasia that form discrete horizontal lesions or pits within otherwise normal enamel. We propose that the Garba IV child is the earliest example of AI and provides a link between palaeoanthropology and molecular biology in investigations of the evolutionary history of genetic disorders.  相似文献   
106.
107.
Proteins with predominantly hydrophobic character called amelogenins play a key role in the formation of the highly organized enamel tissue by forming nanospheres that interact with hydroxyapatite crystals. In the present investigation, we have studied the temperature and pH-dependent self-assembly of two recombinant mouse amelogenins, rM179 and rM166, the latter being an engineered version of the protein that lacks a 13 amino acid hydrophilic C-terminus. It has been postulated that this hydrophilic domain plays an important role in controlling the self-assembly behavior of rM179. By small-angle X-ray and neutron scattering, as well as by dynamic light scattering, we observed the onset of an aggregation of the rM179 protein nanospheres at pH 8. This behavior of the full-length recombinant protein is best explained by a core-shell model for the nanospheres, where hydrophilic and negatively charged side chains prevent the agglomeration of hydrophobic cores of the protein nanospheres at lower temperatures, while clusters consisting of several nanospheres start to form at elevated temperatures. In contrast, while capable of forming nanospheres, rM166 shows a very different aggregation behavior resulting in the formation of larger precipitates just above room temperature. These results, together with recent observations that rM179, unlike rM166, can regulate mineral organization in vitro, suggest that the aggregation of nanospheres of the full-length amelogenin rM179 is an important step in the self-assembly of the enamel matrix.  相似文献   
108.
109.
This study describes the molar enamel microstructure of the greater galago, based on SEM study of four individuals. Galago molar enamel consists primarily of radially oriented Pattern 1 prisms. However, the most superficial enamel is characterized by regions of poorly developed prisms or nonprismatic enamel, and Pattern 3 prisms can be found at depths intermediate and deep to the enamel surface. Orientations of prism long axes relative to wear surfaces differ among functionally distinct regions (cuspal facets, Phase I/II facets, and crushing basins). Consequently, orientations of enamel crystallites relative to these surfaces also differ. Because crystallites are the structural unit involved in enamel abrasion, these differences in orientation may have important effects on molar wear patterns. Crystallite orientations differ most between cuspal facets and Phase I/II facet surfaces. Cuspal facets are characterized by near surface-parallel interprismatic and surface-oblique prismatic crystallites. Previous experimental studies suggest that this arrangement is most resistant to wear when surface-normal (compressive) loads predominate. In contrast, prismatic and interprismatic crystallites intercept Phase I/II facet surfaces obliquely, an arrangement expected to resist abrasion when surface-parallel (shearing) loads predominate. Superficial enamel is preserved at most basin surfaces, indicating that these regions are subject to comparatively little abrasive wear. These results support the hypothesis that galago occlusal enamel is organized so as to resist abrasion of different functional regions, a property that may prove important in maintaining functional efficiency. However, this largely reflects constraints of occlusal topography on a microstructure typical of many mammals and thus does not appear to represent a structural innovation. © 1993 Wiley-Liss, Inc.  相似文献   
110.
During epithelial-mesenchymal interactions associated with mammalian tooth development, epithelially-derived and mesenchymally-derived extracellular matrix molecules form a discrete dentine-enamel junction. The developmental and molecular processes required to form this junction are not known. To address this problem we designed studies to test the hypothesis that ectodermally-derived epithelial cells synthesize and secrete enamel proteins which function to nucleate and regulate the growth of enamel calcium phosphate crystals. Initial enamel crystals were detected separate from the adiacent dentine. Electron-microprobe analyses revealed that early enamel crystals were octacalciumphosphate or tricalciumphosphate rather than hydroxyapatite. Thereafter, enamel crystals became confluent with the adjacent, albeit significantly smaller hydroxyapatite crystals associated with mineralized dentine. Therefore, we interpret our data to indicate that de novo enamel crystal nucleation and growth are independent from the mineralization processes characterized for dentine. We further argue that gene expression of enamel protein appears to have a constitutive function during early enamel formation and that supramolecular aggregates of amelogenin and enamelin provide the microenvironment for the nucleation and crystal growth of the initial enamel matrix.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号