首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   108篇
  免费   1篇
  国内免费   4篇
  2021年   2篇
  2020年   6篇
  2019年   5篇
  2018年   7篇
  2017年   5篇
  2015年   6篇
  2014年   15篇
  2013年   7篇
  2012年   6篇
  2011年   16篇
  2010年   3篇
  2009年   5篇
  2008年   7篇
  2007年   7篇
  2006年   1篇
  2005年   2篇
  2004年   1篇
  2003年   1篇
  2002年   2篇
  1993年   1篇
  1990年   1篇
  1986年   1篇
  1981年   2篇
  1980年   1篇
  1979年   1篇
  1976年   1篇
  1974年   1篇
排序方式: 共有113条查询结果,搜索用时 31 毫秒
101.
The use of sulfate-reducing bacteria (SRB) is a cost-effective route to treat sulfate- contaminated waters and precipitate metals. The isolation and characterization of a SRB strain from an AMD in a Brazilian tropical region site was carried out. With a moderately acidic pH (5.5), the C.1 strain began its growth and with continued growth, modified the pH accordingly. The strain under these conditions reduced sulfate at the same rate as an experiment performed using an initial pH of 7.0. The dsrB gene-based molecular approach was used for the characterization of this strain and its phylogenetic affiliation was similar to genus Desulfovibrio sp. The results show an SRB isolate with unexpected sulfate reducing capacity in moderately acidic conditions, bringing new possibilities for the treatment of AMD, as acid water would be neutralized to a mildly acidic condition.  相似文献   
102.
The diversity of bacterial communities at three sites impacted by acid mine drainage (AMD) from the Yinshan Mine in China was studied using comparative sequence analysis of two molecular markers, the 16S rRNA and gyrB genes. The phylogenetic analyses retrieved sequences from six classes of bacteria, Nitrospira, Alphaproteobacteria, Gammaproteobacteria, Deltaproteobacteria, Acidobacteria, and Actinobacteria, as well as sequences related to the plastid of the cyanobacterium Cyanidium acidocaldarium and also some unknown bacteria. The results of phylogenetic analyses based on gyrB and 16S rRNA were compared. This confirmed that gyrB gene analysis may be a useful tool, in addition to the comparative sequence analysis of the 16S rRNA gene, for the analysis of microbial community compositions. Moreover, the Mantel test showed that the geochemical characteristics, especially the pH value and the concentration of iron, strongly influenced the composition of the microbial communities.  相似文献   
103.
104.
Glycative stress, caused by the accumulation of cytotoxic and irreversibly-formed sugar-derived advanced glycation end-products (AGEs), contributes to morbidity associated with aging, age-related diseases, and metabolic diseases. In this review, we summarize pathways leading to formation of AGEs, largely from sugars and glycolytic intermediates, and discuss detoxification of AGE precursors, including the glyoxalase system and DJ-1/Park7 deglycase. Disease pathogenesis downstream of AGE accumulation can be cell autonomous due to aggregation of glycated proteins and impaired protein function, which occurs in ocular cataracts. Extracellular AGEs also activate RAGE signaling, leading to oxidative stress, inflammation, and leukostasis in diabetic complications such as diabetic retinopathy. Pharmaceutical agents have been tested in animal models and clinically to diminish glycative burden. We summarize existing strategies and point out several new directions to diminish glycative stress including: plant-derived polyphenols as AGE inhibitors and glyoxalase inducers; improved dietary patterns, particularly Mediterranean and low glycemic diets; and enhancing proteolytic capacities of the ubiquitin-proteasome and autophagy pathways that are involved in cellular clearing of AGEs.  相似文献   
105.
The highly polymorphic Human Leukocyte Antigen system encompasses different loci that have been studied in transplantation as well as diseases and population associated research. This study is the first and largest of its kind to describe the distribution of HLA-A, -B and -C alleles in Lebanon. Respectively, 1994, 1309 and 1163 Lebanese individuals referred for HLA typing and possible bone marrow/kidney donation were tested for HLA-A, HLA-B and HLA-C alleles using the polymerase chain reaction/Sequence specific priming (PCR-SSP) method. Our data were compared to that of several populations with interesting and common findings shared with the Moroccan, Jordanian, Tunisian, Omani, Korean, Chinese, Japanese, Peruan, Bulgarian, Irish, Polish, Spanish, Swiss, American, African and Brazilian populations. The following data concerning the Lebanese population will help future investigators to study the relation of HLA-A, -B and -C alleles with common diseases in Lebanon and will add to the available international literature. This new data will serve as a major reference report in the region.  相似文献   
106.
107.
Endothelial progenitor cells (EPCs) play a capital role in angiogenesis via directly participating in neo‐vessel formation and secreting pro‐angiogenic factors. Stromal cell‐derived factor 1 (SDF‐1) and its receptor CXCR4 play a critical role in the retention and quiescence of EPCs within its niche in the bone marrow. Disturbing the interaction between SDF‐1 and CXCR4 is an effective strategy for EPC mobilization. We developed a novel CXCR4 antagonist P2G, a mutant protein of SDF‐1β with high antagonistic activity against CXCR4 and high potency in enhancing ischaemic angiogenesis and blood perfusion. However, its direct effects on ischaemic tissue remain largely unknown. In this study, P2G was found to possess a robust capability to promote EPC infiltration and incorporation in neo‐vessels, enhance the expression and function of pro‐angiogenic factors, such as SDF‐1, vascular endothelial growth factor and matrix metalloprotein‐9, and activate cell signals involved in angiogenesis, such as proliferating cell nuclear antigen, protein kinase B (Akt), extracellular regulated protein kinases and mammalian target of rapamycin, in ischaemic tissue. Moreover, P2G can attenuate fibrotic remodelling to facilitate the recovery of ischaemic tissue. The capability of P2G in direct augmenting ischaemic environment for angiogenesis suggests that it is a potential candidate for the therapy of ischaemia diseases.  相似文献   
108.
Impaired dark adaptation (DA), a defect in the ability to adjust to dimly lit settings, is a universal hallmark of aging. However, the mechanisms responsible for impaired DA are poorly understood. Vitamin A byproducts, such as vitamin A dimers, are small molecules that form in the retina during the vitamin A cycle. We show that later in life, in the human eye, these byproducts reach levels commensurate with those of vitamin A. In mice, selectively inhibiting the formation of these byproducts, with the investigational drug C20D3-vitamin A, results in faster DA. In contrast, acutely increasing these ocular byproducts through exogenous delivery leads to slower DA, with otherwise preserved retinal function and morphology. Our findings reveal that vitamin A cycle byproducts alone are sufficient to cause delays in DA and suggest that they may contribute to universal age-related DA impairment. Our data further indicate that the age-related decline in DA may be tractable to pharmacological intervention by C20D3-vitamin A.  相似文献   
109.
Polyamines are ubiquitous positively charged amines found in all organisms. These molecules play a crucial role in many biological functions including cell growth, gene regulation and differentiation. The three major polyamines produced in all mammalian cells are putrescine, spermidine and spermine. The intracellular levels of these polyamines depend on the interplay of the biosynthetic and catabolic enzymes of the polyamine and methionine salvage pathway, as well as the involvement of polyamine transporters. Polyamine levels are observed to be high in cancer cells, which contributes to malignant transformation, cell proliferation and poor patient prognosis. Considering the critical roles of polyamines in cancer cell proliferation, numerous anti-polyaminergic compounds have been developed as anti-tumor agents, which seek to suppress polyamine levels by specifically inhibiting polyamine biosynthesis, activating polyamine catabolism, or blocking polyamine transporters. However, in terms of the development of effective anti-cancer therapeutics targeting the polyamine system, these efforts have unfortunately resulted in little success. Recently, several studies using the iron chelators, O-trensox and ICL670A (Deferasirox), have demonstrated a decline in both iron and polyamine levels. Since iron levels are also high in cancer cells, and like polyamines, are required for proliferation, these latter findings suggest a biochemically integrated link between iron and polyamine metabolism.  相似文献   
110.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号