首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   878篇
  免费   113篇
  国内免费   340篇
  2024年   1篇
  2023年   16篇
  2022年   11篇
  2021年   29篇
  2020年   30篇
  2019年   54篇
  2018年   37篇
  2017年   48篇
  2016年   42篇
  2015年   65篇
  2014年   55篇
  2013年   68篇
  2012年   54篇
  2011年   60篇
  2010年   46篇
  2009年   57篇
  2008年   67篇
  2007年   64篇
  2006年   56篇
  2005年   51篇
  2004年   39篇
  2003年   29篇
  2002年   36篇
  2001年   40篇
  2000年   37篇
  1999年   24篇
  1998年   21篇
  1997年   11篇
  1996年   28篇
  1995年   14篇
  1994年   17篇
  1993年   17篇
  1992年   10篇
  1991年   14篇
  1990年   11篇
  1989年   14篇
  1988年   12篇
  1987年   5篇
  1986年   10篇
  1985年   4篇
  1984年   7篇
  1983年   2篇
  1982年   3篇
  1981年   3篇
  1980年   6篇
  1979年   3篇
  1978年   1篇
  1977年   1篇
  1976年   1篇
排序方式: 共有1331条查询结果,搜索用时 781 毫秒
11.
12.
The mature larvae of the soybean pod borer Leguminivora glycinivorella, spend over 9 months (October-next August) in the inactive state until pupation down to 3 cm below the surface in soil. Trehalose content of inactive larvae increases in early winter, attaining a maximum (ca 30 mg/g), and decreases in spring, with a concomitant decrease and increase of glycogen. The median supercooling points seasonally change from ?19.8°C (October) to ?25.0°C (February), and to ?17.0°C (June). The lower supercooling points in winter are in part due to the absence of unusually high values (> ?18°C). The increase in trehalose does not seem to be effective in depressing the supercooling points. The larvae are freeze-intolerant, but ambient temperatures in outdoor conditions are always above the supercooling points. The survival rates are very high throughout the inactive period.  相似文献   
13.
Root development was studied in winter wheat ( Triticum aestivum L. cv Starke II) grown at 5,10, 15 and 20°C in nutrient solutions with phosphate concentrations of 10, 100 or 1000 μM . The plants were grown for 38 days (5 and 10°C), 19 days (15°C) or 14 days (20°C). At the end of the cultivation period the phosphate influx in the roots was determined with 32P-phosphate. Root development (lateral and seminal roof length and number) was monitored throughout the cultivation period on the same individuals by repeated (approximately every second day) photocopying of the roots for measurements with digitizer and appropriate software. The 5°C treatment yielded no laterals, and the seminals were only slightly affected by the different phosphate treatments. The 10 μM phosphate treatment gave high root:shoot dry weight ratio, high average lateral root length and high specific root length [m root (g root fresh weight)-1]. The 1000 μM phosphate treatment yielded the highest number of laterals per m seminal root, and usually also the highest absolute numbers. Phosphate influx decreased with increased P status of the roots. It is argued that phosphate influx is dependent on factors such as P status, root geometry and relative root extension rate.  相似文献   
14.
Hydrilla verticillata (L. f.) Royle tubers from monoecious plants andPotamogeton gramineus L. winter buds were sprouted and allowed to grow in the dark for 120 days. We measured plant length and counted the number of leaves at 2–3 day intervals.Hydrilla grew most rapidly during the first 16–17 days andPotamogeton grew most rapidly during the first 16–25 days. Measurement of propagule carbon content over time indicated that cessation of rapid growth coincided with depletion of tuber carbon by one-half forHydrilla. ForPotamogeton, growth was reduced after 16 to 25 days while the winter bud C half-life was 37 days. Calculations indicated thatHydrilla mobilized 49% andPotamogeton 39% of the initial propagule carbon to support growth. In a second experiment, in which plants were grown in substrate the plants grew taller and produced slightly more leaves per plant.Potamogeton removed from darkness after specified time periods, and allowed to grow for 21 days in a greenhouse recovered from 20–30 days in the dark. Similarly treatedHydrilla plants recovered from up to 80 days in the dark.Potamogeton had mobilized 79% of initial C by the time it was unable to recover from the dark treatment. Combined results for both species indicate that the majority of propagule C was utilized in the first 16 to 30 days following sprouting. In conjunction with an understanding propagule sprouting requirements, this information will be useful in the timing of application for management techniques. The U.S. Government right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged. The U.S. Government right to retain a non-exclusive, royalty-free licence in and to any copyright is acknowledged.  相似文献   
15.
A role for nitrogen reserves in forage regrowth and stress tolerance   总被引:20,自引:0,他引:20  
Carbohydrate accumulation and utilization during shoot regrowth after defoliation and winter has been studied extensively in most species used as forage. However, recent work suggests that N reserves found in vegetative tissues also are important for defoliation tolerance and winter hardiness. Results suggest that these N reserves constitute an alternative N source used when N2 fixation and/or mineral N uptake are reduced. 15N labelling experiments indicate that a large proportion of herbage N is derived from N reserves mobilized from stem bases or roots to developing leaves and shoots. Amino acids and specific proteins (i.e. vegetative storage proteins, VSPs) are deposited in roots and stem bases and, in the case of VSPs, are degraded rapidly after defoliation. Identification and characterization of VSPs will increase our understanding of the role N reserves play in stress tolerance and may lead to innovative approaches for improving forage persistence and productivity.  相似文献   
16.
Time courses of formation of inositol 1,4,5-trisphosphate (IP3) were followed in the leaves of non-acclimated and cold (2°C)-acclimated winter oilseed rape ( Brassica napus L. var. oleifera ) plants, subjected to different freezing temperatures or to polyethylene glycol 8000 (PEG) and abscisic acid (ABA) treatments. Changes in water potential (Ψw) and in ABA level in the frost- and PEG-treated tissues were also determined. Results obtained indicate that temperatures sligthly higher than LT50 induced a transient and substantial increase in IP3 level, both in non-acclimated and cold-acclimated tissues. At comparable freezing temperature (–5°C) the response of cold-acclimated leaves was lower than that of non-acclimated ones. The PEG-depedent decrease in Ψw to –0.9 MPa or ABA (0.1 m M ) treatment gave rise to a transient increase in IP3 content in non-acclimated tissues only. Collectively, the data indicate that cold acclimation of plants may lead to lower cell responsiveness to the factors studied in terms of induction of IP3 formation. Changes in the IP3 content, observed in the present experiments, support our previous suggestion that non-killing freezing temperatures may induce the phosphoinositide pathway, both in non-acclimated and cold-acclimated tissues. Lowering of tissue water potential to some threshold value or a high exogenous ABA supply may mimic the freezing-dependent reaction in the non-acclimated leaves.  相似文献   
17.
The impact of elevated carbon dioxide (CO2, 600/700 μmol mol-1) and temperature (+ 4°C) on phyllosphere fungi colonising flag leaves of mini crops of winter wheat cv. Mercia between anthesis and harvest was determined in a computer-controlled environment facility in 1993 and 1994. In both years the total fungal populations (cm2 leaf) were found to have increased due to exposure to either elevated CO2 and elevated CO2+ temperature treatments. This was mainly due to significant increases in populations of Cladosporium spp. (C. cladosporioides and C. herbarum) on the flag leaves during ripening. Other phyllosphere component species such as white and pink yeasts were not markedly affected by treatments. The range of fungal species found in such controlled environment chambers was narrower than that commonly found on flag leaves of field grown crops. Common and important colonisers of leaves and ripening ears such as Aureobasidium pullulans, Epicoccum nigrum and Fusarium spp. were seldom isolated.  相似文献   
18.
A field experiment on winter wheat in autumn 1991 investigated the effect of the rhabditid nematode, Phasmarhabditis hermaphrodita, applied to soil at five dose rates (108 - 1010 infective larvae ha-1) immediately after seed sowing, on slug populations and damage to seeds and seedlings. The nematode was compared with methiocarb pellets broadcast at recommended field rate immediately after drilling and no molluscicide treatment. Slug damage to wheat seeds and seedlings was assessed 6 and 13 wk after drilling. Seedling survival increased and slug grazing damage to seedlings declined linearly with increasing log nematode dose. These two measures of slug damage were combined to give an index of undamaged plant equivalents, which also increased linearly with increasing log nematode dose. ANOVA showed that, after 6 wk, there were significantly more undamaged plant equivalents on plots treated with the two highest nematode doses (3 × 109 and 1 × 1010 ha-1) than on untreated plots, but the number of undamaged plant equivalents on methiocarb-treated plots was not significantly greater than that on untreated plots. Slug populations were assessed by refuge trapping and soil sampling. Deroceras reticulatum was the commonest of several species of slugs recorded. During the first 4 wk after sowing, significantly more slugs were found under refuge traps on plots treated with certain doses of P. hermaphrodita than under traps on untreated plots and more showed signs of nematode infection than expected from the prevalence of infection in slugs from soil samples, suggesting that the presence of P. hermaphrodita altered slug behaviour. Application of P. hermaphrodita had no significant impact on numbers or biomass of slugs in soil during a 27 wk period after treatment, except after 5 wk when slug numbers were inversely related to log nematode dose. However, by this time, numbers in soil samples from untreated plots had declined to levels similar to those in plots treated with the highest dose of nematodes. During the first 5 wk after treatment, c. 20% of slugs in soil samples from untreated plots showed symptoms of nematode infection. It is suggested that this represented the background level of infection in the experimental field rather than spread of infection from treated plots. The apparent lack of impact of P. hermaphrodita on slug numbers and biomass in soil suggests that its efficacy in protecting wheat from slug damage was through inhibition of feeding by infected slugs.  相似文献   
19.
Abstract.
  • 1 The relative influences of temperature and availability of food on reproduction, survival and growth of all developmental stages of two carabid beetle species are discussed with special reference to the suggested relationship between availability of food, size of egg production and survival of adults from one breeding season to the next.
  • 2 Temperature as well as food supply influence the length of larval growth and adult body size. Beetles grown at low temperatures and low amounts of food are smaller than those grown at higher temperature and with more food.
  • 3 The number of eggs laid per female was correlated with the amount of food gathered. There was no inverse relationship (trade-off) between reproductive output and survival in the field until the next breeding season.
  • 4 In 1980 no significant relationship was found between winter mortality and the amounts of food gathered by beetles in the period after reproduction and before winter diapause. However, in 1981 in C. melanocephalus a lower number of starved beetles survived the winter than the fed ones and‘field’beetles.
  • 5 Only in the first part of the feeding activity period in autumn can enough food be gathered by C.melunocephalus for successful hibernation. In the second part of this period there is not enough food to build up the fat reserves needed to survive the winter.
  • 6 Difference in population fluctuations of both species are discussed in relation to their life histories.
  相似文献   
20.
渍水对冬小麦生长的危害及其生理效应   总被引:7,自引:0,他引:7  
小麦受渍后叶片的光合和蒸腾速率迅速下降,而后则显微弱的回升趋势。渍害不仅削弱小麦光合产物的积累,并且改变光合产物在地上部分和根系中的分配比例;植株根/冠比下降,而黄叶的发展与根/冠比的变化呈显著负相关;渍害改变小麦的发育进程,尤其是后期渍害明显促使小麦早衰。认为清水使叶片光合速率降低、光合有效面积损失和衰老加速,从而危害小麦的生长。  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号