首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   141篇
  免费   14篇
  国内免费   1篇
  2021年   4篇
  2020年   2篇
  2019年   4篇
  2017年   5篇
  2016年   5篇
  2015年   6篇
  2014年   2篇
  2013年   24篇
  2012年   5篇
  2011年   7篇
  2010年   1篇
  2009年   5篇
  2008年   11篇
  2007年   3篇
  2006年   4篇
  2005年   4篇
  2004年   4篇
  2003年   2篇
  2002年   1篇
  2001年   2篇
  2000年   2篇
  1999年   3篇
  1998年   4篇
  1997年   1篇
  1996年   6篇
  1995年   3篇
  1994年   1篇
  1993年   3篇
  1992年   1篇
  1991年   3篇
  1990年   1篇
  1989年   2篇
  1987年   3篇
  1986年   2篇
  1985年   3篇
  1984年   9篇
  1982年   4篇
  1981年   2篇
  1979年   1篇
  1978年   1篇
排序方式: 共有156条查询结果,搜索用时 15 毫秒
11.
12.
Young seedlings of Ipomoea batatas (L.) Lam. cv. Big One did not form floral buds, but were induced to flower when grafted onto Pharbitis nil Chois. cv. Violet with its cotyledons exposed to a 16 h dark period (SD). Four SD were required to induce flowering in I. batatas scions when the grafted plants were first grown under an 8 h dark period (LD) for 18 days and then exposed to SD. Transmission of the flowering stimulus across the graft union required 4 days. It was also slow in the graft combination of P. nil and P. nil , but increased greatly when the graft union was established more completely. These results suggest that the flowering stimulus of P. nil may move symplastically and its life may be between 4 and 6 days. Although the leaves of I. batatas inhibited flowering, the flowering response of P. nil grafted onto I. batatas suggested that the involvement of a transmissible flowering-inhibitor was unlikely.  相似文献   
13.
Abstract.  The effects of day length on adult diapause development, associated with diapause body colour change as well as postdiapause reproduction are studied in Nezara viridula from Japan. Facultative diapause spontaneously terminates under three constant short-day and near-critical photoperiods at 25 °C without low temperature treatment. The period required for body colour change from russet to green and the precopulation and preoviposition periods differ significantly between the photoperiodic treatments, being shortest under LD 13 : 11 h, intermediate under LD 12 : 12 h and longest under LD 10 : 14 h. Photoperiodic conditions do not affect postdiapause reproductive performance: the total egg production, duration of the period of oviposition and other reproductive indices do not differ significantly between the photoperiodic conditions. The total egg production depends on the duration of the period of oviposition but not on how long females remained russet during diapause. It is concluded that diapause in N. viridula does not require low temperature for its successful completion and diapause duration affects winter survival but not postdiapause reproductive performance or longevity. Such independence of the postdiapause reproductive performance from the duration of diapause may have contributed to the continuous worldwide range expansion of this species into temperate zone.  相似文献   
14.
Virtually all species have developed cellular oscillations and mechanisms that synchronize these cellular oscillations to environmental cycles. Such environmental cycles in biotic (e.g. food availability and predation risk) or abiotic (e.g. temperature and light) factors may occur on a daily, annual or tidal time scale. Internal timing mechanisms may facilitate behavioural or physiological adaptation to such changes in environmental conditions. These timing mechanisms commonly involve an internal molecular oscillator (a 'clock') that is synchronized ('entrained') to the environmental cycle by receptor mechanisms responding to relevant environmental signals ('Zeitgeber', i.e. German for time-giver). To understand the evolution of such timing mechanisms, we have to understand the mechanisms leading to selective advantage. Although major advances have been made in our understanding of the physiological and molecular mechanisms driving internal cycles (proximate questions), studies identifying mechanisms of natural selection on clock systems (ultimate questions) are rather limited. Here, we discuss the selective advantage of a circadian system and how its adaptation to day length variation may have a functional role in optimizing seasonal timing. We discuss various cases where selective advantages of circadian timing mechanisms have been shown and cases where temporarily loss of circadian timing may cause selective advantage. We suggest an explanation for why a circadian timing system has emerged in primitive life forms like cyanobacteria and we evaluate a possible molecular mechanism that enabled these bacteria to adapt to seasonal variation in day length. We further discuss how the role of the circadian system in photoperiodic time measurement may explain differential selection pressures on circadian period when species are exposed to changing climatic conditions (e.g. global warming) or when they expand their geographical range to different latitudes or altitudes.  相似文献   
15.
Abstract. The effect of photoperiod and temperature on the duration of the nymphal period, diapause induction and colour change in adults of Nezara viridula (L.) (Heteroptera: Pentatomidae) from Japan was studied in the laboratory. At 20 °C, the developmental period for nymphs was significantly shorter under LD 10 : 14 h (short day) and LD 16 : 8 h (long day) than under intermediate photoperiods, whereas at 25 °C it was slightly shorter under intermediate than short- and long-day conditions. It is assumed that photoperiod-mediated acceleration of nymphal growth takes place in autumn when day-length is short and it is unlikely that nymphal development is affected by day-length under summer long-day and hot conditions. Nezara viridula has an adult diapause controlled by a long-day photoperiodic response. At 20 °C and 25 °C in both sexes, photoperiodic responses were similar and had thresholds close to 12.5 h, thus suggesting that the response is thermostable within this range of temperatures and day-length plays a leading role in diapause induction. Precopulation and preoviposition periods were significantly longer under near-critical regimes than under long-day ones. Short-day and near-critical photoperiods induced a gradual change of adult colour from green to brown/russet. The rate of colour change was significantly higher under LD 10 : 14 h than under LD 13 : 11 h, suggesting that the colour change is strongly associated with diapause induction. The incidences of diapause or dark colour did not vary among genetically determined colour morphs, indicating that these morphs have a similar tendency to enter diapause and change colour in response to short-day conditions.  相似文献   
16.
Abstract.  Eggs laid by adult female Dianemobius nigrofasciatus , reared under long-day (LD 16 : 8 h, 25 °C) or short-day (LD 12 : 12 h, 25 °C) conditions from the nymphal stage, are kept at several constant temperatures. At 22.5–30.0 °C, eggs laid by long-day adults show lower incidences of diapause than those laid by short-day adults. In both eggs laid by adults under long-day conditions and those under short-day conditions, the higher the temperature at which the eggs are kept, the lower the incidence of diapause. When eggs of long-day adults are exposed to a low-temperature pulse (10 °C, 24 h) on the day of deposition (day 0), the incidence of diapause increases. The low-temperature pulse on day 1 does not increase the incidence of diapause. By contrast, when the eggs of short-day adults are exposed to a high-temperature pulse (35 °C, 24 h) on day 0 or day 1, the incidence of diapause decreases. The temperature pulses on day 0 are more effective at diapause prevention. Staining of diapause eggs by the Feulgen–Rossenbeck method shows that the eggs enter diapause at the blastoderm stage, which is on day 1 or day 2 at 25 °C. The exposure of adults to long days and higher temperatures prevents the eggs from entering diapause. In D. nigrofasciatus , embryonic diapause is controlled by maternal effects, adult photoperiod and temperature, and egg temperature before or at diapause.  相似文献   
17.
18.
19.
The flesh fly Sarcophaga similis show a clear photoperiodic response; they develop into adults under long days, whereas they arrest their development at the pupal stage under short days. Although the involvement of a circadian clock in photoperiodic time measurement is suggested in this species, the anatomical location of the clock neurons responsible for the time measurement has been unknown. We detected two PERIOD-immunoreactive cell clusters in the larval brain; one cluster was located at the dorsoanterior region and the other at the medial region. We further investigated their temporal changes in PERIOD-immunoreactivity and compared their patterns under different photoperiods.  相似文献   
20.
The properties of phytochrome have been measured by dual-wavelength spectropho-tometry in the cotyledons of the short-day plant Pharbitis nil Choisy cv. Violet, where it is known to play a role in flower induction. In plants de-etiolated by a single white light period (4 h or longer), destruction of the far-red absorbing form of phytochrome (Pfr) was twice as rapid as after 10 min red light. A small fraction of Pfr was stable. After de-etiolation by a period of white light (6 h or longer) the rapid decrease of Pfr during the first 30 min was accompanied by a rapid increase of the red absorbing form of phytochrome (Pfr). This rapid increase of Pfr is probably due to dark reversion. Long term synthesis of phytochrome was inhibited by the presence of Pfr. Phytochrome synthesised in darkness showed the etiolated-plant type characteristics and underwent rapid destruction upon photoconversion to Pfr. The stable Pfr identified here is possibly that pool of phytochrome associated with the long term promotive process in flower induction, and the rapidly reverting Pfr is that pool associated with the night break inhibition of flowering.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号